【題目】已知:如圖,在△ABC中,∠ABC=45°,AH⊥BC于點(diǎn)H,點(diǎn)D為AH上的一點(diǎn),且DH=HC,連接BD并延長BD交AC于點(diǎn)E,連接EH.
(1)請補(bǔ)全圖形;
(2)求證:△ABE是直角三角形;
(3)若BE=a,CE=b,求出S△CEH:S△BEH的值(用含有a,b的代數(shù)式表示)
【答案】(1)見解析;(2)證明見解析;(3);
【解析】
(1)根據(jù)題意直接補(bǔ)全圖形;
(2)證明△BHD≌△AHC,根據(jù)全等三角形的性質(zhì),得到∠HBD=∠CAH,又∠HBD+∠BDH=90°,∠BDH=∠ADE,即可得到∠ADE+∠DAE=90°,根據(jù)三角形的內(nèi)角和得到∠AED=90°,即可證明△ABE是直角三角形;
(3)作HM⊥BE于M,HN⊥AC于N.根據(jù)全等三角形的性質(zhì)得到HM=HN,根據(jù)三角形的面積公式即可求出S△CEH:S△BEH的值.
(1)解:圖形如圖所示;
(2)證明:∵AH⊥BC,
∴∠BHD=∠AEH=90°,
∵∠ABC=45°,
∴∠BAH=∠ABH=45°,
∴AH=BH,
在△BHD和△AHC中,
∴△BHD≌△AHC(SAS),
∴∠HBD=∠CAH,
∵∠HBD+∠BDH=90°,∠BDH=∠ADE,
∴∠ADE+∠DAE=90°,
∴∠AED=90°,
∴△ABE是直角三角形.
(3)作HM⊥BE于M,HN⊥AC于N.
∵△BHD≌△AHC,
∴HM=HN(全等三角形對應(yīng)邊上的高相等),
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰用刻度尺畫已知角的平分線,如圖,在∠MAN兩邊上分別量取AB=AC,AE=AF,連接FC,EB交于點(diǎn)D,作射線AD,則圖中全等的三角形共有________對.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】取一副三角板按圖1拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A依順時(shí)針方向旋轉(zhuǎn)一個(gè)大小為α的角 (0°<α≤45°)得到△ABC′,如圖所示.試問:
(1)當(dāng)α為多少度時(shí),能使得圖2中AB∥DC.
(2)連接BD,當(dāng)0°<α≤45°時(shí),探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求證:△CEF是等腰三角形;
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織290名學(xué)生進(jìn)行野外考察活動(dòng),行李件數(shù)比學(xué)生人數(shù)的一半還少45.學(xué)校計(jì)劃租用甲、乙兩種型號(hào)的汽車共8輛,經(jīng)了解,甲種汽車每輛最多能載40人和10件行李,乙種汽車最多能載30人和20件行李.
(1)求行李有多少件?
(2)現(xiàn)計(jì)劃租用甲種汽車x輛,請你幫學(xué)校設(shè)計(jì)所有可能的租車方案.
(3)如果甲、乙兩種汽車每輛的租車費(fèi)分別是2000元、1800元,請你選擇最省錢的一種租車方案,并求出至少的費(fèi)用是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù) 的圖象與x軸,y軸分別交于點(diǎn)A、B,與函數(shù)的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2,在x軸上有一點(diǎn)P(a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和的圖象于點(diǎn)C、D.
(1)求點(diǎn)M、點(diǎn)A的坐標(biāo);
(2)若OB=CD,求a的值,并求此時(shí)四邊形OPCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O是邊長為2的正方形ABCD的中心.
(1)若函數(shù)y=x2+m的圖象過點(diǎn)C,求這個(gè)函數(shù)的解析式;并判斷其函數(shù)圖象是否過A點(diǎn).
(2)若將(1)中的函數(shù)圖象先向右平移1個(gè)單位,再向上平移2個(gè)單位,直接寫出平移后函數(shù)的解析式和頂點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com