【題目】根據(jù)重慶軌道集團提供的日客運量統(tǒng)計,2019年2月21日重慶軌道交通首次日客運量突破300萬乘次,其中近期開通的重慶軌道交通環(huán)線日客運量為21.5萬乘次.據(jù)了解,某工作日上午7點至9點軌道環(huán)線四公里站有20列列車進出站,每列車進出站時,將上車和下車的人數(shù)記錄下來,各得到20個數(shù)據(jù),并將數(shù)據(jù)進行整理,繪制成了如下兩幅不完整統(tǒng)計圖.(數(shù)據(jù)分組為:組:,組:,組:,組:,組:)
I.上車人數(shù)在組的是:190,190,191,192,193,193,195,196,198,198,198,198;
II.上車人數(shù)的平均數(shù)、中位數(shù)如下表:
平均數(shù) | 中位數(shù) | |
上車人數(shù)(人) | 194 | a |
根據(jù)以上信息,回答下列問題:
(1)請補全頻數(shù)分布直方圖;
(2)表中________,扇形統(tǒng)計圖中_________,扇形統(tǒng)計圖中組所在的圓心角度數(shù)為________度;
(3)請利用平均數(shù),估算一周內(nèi)5個工作日的上午7點至9點重慶軌道環(huán)線四公里站的上車總?cè)藬?shù).
【答案】(1)補圖見解析;(2)193,30,36;(3)19400人.
【解析】
(1)用20減去A、C、D、E組的數(shù)量得到B組數(shù)量,據(jù)此即可補全直方圖;
(2)利用中位數(shù)的概念可求得a的值,用100%減去B、C、D、E組所占的百分比求得A組所占的百分比可求得m的值,用360度乘以E組所占的比例即可求得相應(yīng)圓心角的度數(shù);
(3)用樣本的平均數(shù)乘以這一時間段的進站車數(shù)再乘以天數(shù)即可得.
(1)B組的數(shù)量為:20-2-12-2-1=3,
補全頻數(shù)直方圖如圖所示:
(2)20個數(shù)據(jù)從小到大排列后位于中間的應(yīng)該是第10、第11個數(shù)據(jù),
A、B、C、D、E組的數(shù)據(jù)是從小到大進行的,A、B組共有5個數(shù)據(jù),
C組有12個數(shù)據(jù),從小到大排列為:190,190,191,192,193,193,195,196,198,198,198,198,
C組中的第5個數(shù)據(jù)是總數(shù)據(jù)的第10個,為193,
C組中的第6個數(shù)據(jù)是總數(shù)據(jù)的第11個,為193,
所以中位數(shù)為:(193+193)÷2=193,
即a=193;
m%=100%-25%-20%-15%-10%=30%,
所以m=30;
扇形統(tǒng)計圖中組所在的圓心角度數(shù)為360°×10%=36°,
故答案為:193,30,36;
(3)估算一周內(nèi)5個工作日的上午7點至9點重慶軌道環(huán)線四公里站的上車總?cè)藬?shù)為:
194×20×5=19400人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在國家的宏觀調(diào)控下,某市的商品房成交價由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)問4、5兩月平均每月降價的百分率是多少?
(2)如果房價繼續(xù)回落,按此降價的百分率,你預(yù)測到7月分該市的商品房成交均價是否會跌破3000元/m2?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,點P為x軸上一動點,連接BP,在第一象限內(nèi)作BC⊥AB且BC=AB
(1) 求點A、B的坐標
(2) 如圖1,連接CP.當CP⊥BC時,作CD⊥BP于點D,求線段CD的長度
(3) 如圖2,在第一象限內(nèi)作BQ⊥BP且BQ=BP,連接PQ.設(shè)P(p,0),直接寫出S△PCQ=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積是12,AB=AC,BC=3,邊AC的垂直平分線交AC于F,交AB于E.點D是BC的中點,點P是EF上的一個動點,則△PCD的周長最小值是( )
A.4B.8C.7D.9.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C、D在線段AB上(AC>BD),△PCD是邊長為6的等邊三角形,且∠APB=120°,若AB=19,則AC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=10,sin∠BAC=,過點C作CD∥AB,點E在邊AC上,AE=CD,聯(lián)結(jié)AD,BE的延長線與射線CD、射線AD分別交于點F、G.設(shè)CD=x,△CEF的面積為y.
(1)求證:∠ABE=∠CAD.
(2)如圖,當點G在線段AD上時,求y關(guān)于x的函數(shù)解析式及定義域.
(3)若△DFG是直角三角形,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點.
求證:
(1)△ACE≌△BCD;
(2)AE⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,E是BC邊的中點,BF∥AC,EF∥AB,EF=4 cm.
(1)求∠F的度數(shù);
(2)求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com