【題目】如圖,OAC的頂點(diǎn)O在坐標(biāo)原點(diǎn),OA邊在x軸上,OA=2,AC=1,把OAC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)到O′AC′,使得點(diǎn)O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過(guò)程中線段OC掃過(guò)部分(陰影部分)的面積為______

【答案】

【解析】

過(guò)O′O′MOAM,解直角三角形求出旋轉(zhuǎn)角的度數(shù),根據(jù)圖形得出陰影部分的面積S=S扇形OAO′+SOAC-SOAC-S扇形CAC′=S扇形OAO′-S扇形CAC′,分別求出即可.

過(guò)O′O′MOAM,則∠OMA=90°

∵點(diǎn)O′的坐標(biāo)是(1,),

OM=,OM=1,

AO=2,

AM=2-1=1,

tanOAM=,

∴∠OAM=60°,

即旋轉(zhuǎn)角為60°,

∴∠CAC=OAO=60°,

∵把OAC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)到OAC

SOAC=SOAC,

∴陰影部分的面積S=S扇形OAO′+SOAC-SOAC-S扇形CAC′=S扇形OAO′-S扇形CAC′

=

=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DEABEDFACF,AD平分∠BAC,BD=CD

(1)求證:BE=CF

(2)已知AC=10,DE=4,BE=2,求△AEC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上的點(diǎn)表示的數(shù)是5,點(diǎn)表示的數(shù)是,這兩點(diǎn)都以每秒一個(gè)單位長(zhǎng)度的速度在數(shù)軸上各自朝某個(gè)方向運(yùn)動(dòng),且兩點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng):

1)若點(diǎn)向右運(yùn)動(dòng),則兩秒后點(diǎn)表示的數(shù)是_______;(直接寫(xiě)結(jié)果)

2)若點(diǎn)向左運(yùn)動(dòng),點(diǎn)向右運(yùn)動(dòng),當(dāng)這兩點(diǎn)相遇時(shí)點(diǎn)表示的數(shù)是多少?

3)同時(shí)運(yùn)動(dòng)3秒后,這兩點(diǎn)相距多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李家住房結(jié)構(gòu)如圖所示,小李打算把臥室和客廳鋪上木地板.

(1)請(qǐng)問(wèn)他至少需要買多少平方米的木地板?(用字母表示)

(2)若米,米時(shí),并且每平方米木地板的價(jià)格是元,則他至少需要準(zhǔn)備多少元錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)F的坐標(biāo)為(0,10).點(diǎn)E的坐標(biāo)為(20,0),直線l1經(jīng)過(guò)點(diǎn)F和點(diǎn)E,直線l1與直線l2 、y=x相交于點(diǎn)P.

(1)求直線l1的表達(dá)式和點(diǎn)P的坐標(biāo);

(2)矩形ABCD的邊ABy軸的正半軸上,點(diǎn)A與點(diǎn)F重合,點(diǎn)B在線段OF上,邊AD平行于x 軸,且AB=6,AD=9,將矩形ABCD沿射線FE的方向平移,邊AD始終與x 軸平行.已知矩形ABCD以每秒個(gè)單位的速度勻速移動(dòng)(點(diǎn)A移動(dòng)到點(diǎn)E時(shí)止移動(dòng)),設(shè)移動(dòng)時(shí)間為t秒(t>0).

①矩形ABCD在移動(dòng)過(guò)程中,B、C、D三點(diǎn)中有且只有一個(gè)頂點(diǎn)落在直線l1l2上,請(qǐng)直接寫(xiě)出此時(shí)t的值;

②若矩形ABCD在移動(dòng)的過(guò)程中,直線CD交直線l1于點(diǎn)N,交直線l2于點(diǎn)M.當(dāng)PMN的面積等于18時(shí),請(qǐng)直接寫(xiě)出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).

(1)求證:無(wú)論m為任何非零實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根;

(2)若拋物線y=mx2+(1﹣5m)x﹣5x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且|x1﹣x2|=6,求m的值;

(3)若m>0,點(diǎn)P(a,b)與Q(a+n,b)在(2)中的拋物線上(點(diǎn)P、Q不重合),求代數(shù)式4a2﹣n2+8n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知AC=BC=5,AB=6,點(diǎn)E是線段AB上的動(dòng)點(diǎn)(不與端點(diǎn)重合),點(diǎn)F是線段AC上的動(dòng)點(diǎn),連接CE、EF,若在點(diǎn)E、點(diǎn)F的運(yùn)動(dòng)過(guò)程中,始終保證∠CEF=∠B.當(dāng)以點(diǎn)C為圓心,以CF為半徑的圓與AB相切時(shí),則BE的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)P為∠AOB的角平分線上的一點(diǎn),點(diǎn)D在邊OA上.在邊OB上取一點(diǎn)E,使得PE=PD.

1)用圓規(guī)作出所有符合條件的點(diǎn)E;

2)寫(xiě)出∠OEP與∠ODP的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

解答下列問(wèn)題:

1)如果AB=AC∠BAC=90

當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖乙,線段CFBD之間的位置關(guān)系為 ,數(shù)量關(guān)系為

當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖丙,中的結(jié)論是否仍然成立,為什么?

2)如果AB≠AC,∠BAC≠90,點(diǎn)D在線段BC上運(yùn)動(dòng).

試探究:當(dāng)△ABC滿足一個(gè)什么條件時(shí),CF⊥BC(點(diǎn)CF重合除外)?畫(huà)出相應(yīng)圖形,并說(shuō)明理由.(畫(huà)圖不寫(xiě)作法)

3)若AC,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長(zhǎng)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案