精英家教網(wǎng)如圖,直線(xiàn)y=
43
x+4與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C在OB上,若將△ABC沿AC折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)D處,則點(diǎn)C的坐標(biāo)是
 
分析:利用三角形全等性質(zhì).
解答:解:由題意得:A(-3,0),B(0,4);
∴OA=3,OB=4.那么可得AB=5.
易得△ABC≌△ADC,∴AD=AB=5,∴OD=AD-OA=2.
設(shè)OC為x.那么BC=CD=4-x.那么x2+22=(4-x)2,
解得x=1.5,
∴C(0,1.5).
點(diǎn)評(píng):本題用到的知識(shí)點(diǎn)為:翻折前后的三角形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)y=-
4
3
x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、C和點(diǎn)B(-1,0).
(1)求該二次函數(shù)的關(guān)系式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為M,求四邊形AOCM的面積;
(3)有兩動(dòng)點(diǎn)D、E同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)D以每秒
3
2
個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OAC按O?A?C的路線(xiàn)運(yùn)動(dòng),點(diǎn)E以每秒4個(gè)單位長(zhǎng)度的速度沿折線(xiàn)OCA按O?C?A的路線(xiàn)運(yùn)動(dòng),當(dāng)D、E兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng).設(shè)D、E同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△ODE的面積為S.
①請(qǐng)問(wèn)D、E兩點(diǎn)在運(yùn)動(dòng)過(guò)程中,是否存在DE∥OC,若存在,請(qǐng)求出此時(shí)t的值;若不存精英家教網(wǎng)在,請(qǐng)說(shuō)明理由;
②請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,那么S0=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)y=
4
3
x與雙曲線(xiàn)y=
k
x
(x>0)交于點(diǎn)A,將直線(xiàn)y=
4
3
x向下平移個(gè)6單位后,與雙曲線(xiàn)y=
k
x
(x>0)交于點(diǎn)B,與x軸交于點(diǎn)C,則C點(diǎn)的坐標(biāo)為
 
;若
AO
BC
=2,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)y=-
43
x+4與x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,直線(xiàn)y=-
43
x+8
分別交x軸、y軸于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)分別交x軸、y軸于C、D兩點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)求△BCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案