【題目】如圖1,點A、B在直線上,點C、D在直線上,AE平分∠BAC,CE平分∠ACD,

∠EAC+∠ACE=90° .

(1)請判斷的位置關(guān)系并說明理由;

(2)如圖2,在(1)的結(jié)論下,P為線段AC上一定點,點Q為直線CD上一動點,當點Q在射線CD上運動時(不與點C重合)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?請說明理由.

【答案】(1);(2)①當QC點左側(cè)時,∠BAC=∠CQP +∠CPQ,②當QC點右側(cè)時,∠CPQ+∠CQP+∠BAC=180°.

【解析】1)先根據(jù)CE平分∠ACDAE平分∠BAC得出∠BAC=21,ACD=22再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出結(jié)論

2分兩種情況討論①當QC點左側(cè)時;②當QC點右側(cè)時

1理由如下

AE平分∠BAC,CE平分∠ACD(已知),

∴∠BAC=21,∠ACD=22(角平分線的定義);

又∵∠1+2=90°(已知),

∴∠BAC+ACD=21+22=2(∠1+2=180°(等量代換)

(同旁內(nèi)角互補,兩直線平行)

2)①當QC點左側(cè)時,過點PPE

(已證),

PE(同平行于一條直線的兩直線互相平行),

∴∠1=2,(兩直線平行,內(nèi)錯角相等),

BAC=EPC,(兩直線平行,同位角相等)

又∵∠EPC=1+CPQ,

∴∠BAC=CQP +CPQ(等量代換)

②當QC點右側(cè)時,過點PPE

(已證),

PE(同平行于一條直線的兩直線互相平行),

∴∠1=2,∠BAC=APE,(兩直線平行,內(nèi)錯角相等)

又∵∠EPC=1+CPQ,

APE+EPC=180°(平角定義)

∴∠CPQ+CQP+BAC=180°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 RtABE,連接 ED, EC,延長CE AD F 點,下列結(jié)論:①△ADE≌△BCE;②CEDE;③BD=AF;④SBDE=SACE,其中正確的有(

A. ①③B. ①②④C. ①②③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,過點C任作一射線CM,交ABM,分別過A,BAECM,BFCM,垂足分別為E,F.

(1)求證:∠ACE=CBF

(2)求證:AE=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖請結(jié)合統(tǒng)計圖中的信息,回答下列問題

1)扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角為 并將條形統(tǒng)計圖補充完整.

2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽請用列表法或畫樹狀圖法求出選中的兩名同學恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級某班數(shù)學興趣小組經(jīng)過市場調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價與銷售量的相關(guān)信息如下.已知商品的進價為30/件,設該商品的售價為y(單位:元/件),每天的銷售量為p(單位:件),每天的銷售利潤為w(單位:元).

時間x(天)

1

30

60

90

每天銷售量p(件)

198

140

80

20

1)求出wx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當天的銷售利潤最大?并求出最大利潤;

3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于5600元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,表中給出的是某月的月歷,任意選取型框中的個數(shù)(如陰影部分所示).請你運用所學的數(shù)學知識來研究,則這個數(shù)的和不可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,DBC邊上的點(不與點B、C重合),連結(jié)AD.

(1)如圖1,當點DBC邊上的中點時,SABDSACD= ;

(2)如圖2,當AD是∠BAC的平分線時,若AB=m,AC=n,求SABDSACD的值(用含m,n的代數(shù)式表示)

(3)如圖3AD平分∠BAC,延長ADE,使得AD=DE,連接BE,如果AC=2AB=4,SBDE=6

那么SABC = .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國務院辦公廳在2015316日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進一步普及足球知識,傳播足球文化,我市某區(qū)在中小學舉行了足球在身邊知識競賽,各類獲獎學生人數(shù)的比例情況如圖所示,其中獲得三等獎的學生共50名,請結(jié)合圖中信息,解答下列問題:

1)獲得一等獎的學生人數(shù);

2)在本次知識競賽活動中,AB,C,D四所學校表現(xiàn)突出,現(xiàn)決定從這四所學校中隨機選取兩所學校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學校的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.

(1)作出△ABD 的邊 BD 上的高.

(2)若△ABC 的面積為 10,求△ADC 的面積.

(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長.

查看答案和解析>>

同步練習冊答案