【題目】如圖,在菱形中,,,是的中點,將繞點逆時針旋轉(zhuǎn)至點與點重合,此時點旋轉(zhuǎn)至處,則點在旋轉(zhuǎn)過程中形成的、線段、點在旋轉(zhuǎn)過程中形成的與線段所圍成的陰影部分的面積為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)菱形的性質(zhì)可得AD=AB=4,∠DAB=180°-,AE=,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得:S△ABE=S△ADF,∠FAE=∠DAB=60°,最后根據(jù)S陰影=S扇形DAB+S△ADF―S△ABE―S扇形FAE即可求出陰影部分的面積.
解:∵在菱形中,,,是的中點,
∴AD=AB=4,∠DAB=180°-,AE=,
∵繞點逆時針旋轉(zhuǎn)至點與點重合,此時點旋轉(zhuǎn)至處,
∴S△ABE=S△ADF,∠FAE=∠DAB=60°
∴S陰影=S扇形DAB+S△ADF―S△ABE―S扇形FAE
= S扇形DAB―S扇形FAE
=
=
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 相交于點 O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+(2m﹣1)x﹣2m(m>0.5)的最低點的縱坐標為﹣4.
(1)求拋物線的解析式;
(2)如圖1,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,D為拋物線上的一點,BD平分四邊形ABCD的面積,求點D的坐標;
(3)如圖2,平移拋物線y=x2+(2m﹣1)x﹣2m,使其頂點為坐標原點,直線y=﹣2上有一動點P,過點P作兩條直線,分別與拋物線有唯一的公共點E、F(直線PE、PF不與y軸平行),求證:直線EF恒過某一定點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是CD的中點,點F是BC上的一點,且BF=3CF,連接AE、AF、EF,下列結(jié)論:①∠DAE=30°,②△ADE∽△ECF,③AE⊥EF,④AE2=ADAF,其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚遵義紅色文化,傳承紅色文化精神,某校準備組織學(xué)生開展研學(xué)活動.經(jīng)了解,有A.遵義會議會址、B.茍壩會議會址、C.婁山關(guān)紅軍戰(zhàn)斗遺址、D.四渡赤水紀念館共四個可選擇的研學(xué)基地.現(xiàn)隨機抽取部分學(xué)生對基地的選擇進行調(diào)查,每人必須且只能選擇一個基地.根據(jù)調(diào)查結(jié)果繪制如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)統(tǒng)計圖中______,______;
(2)若該校有1500名學(xué)生,請估計選擇基地的學(xué)生人數(shù);
(3)某班在選擇基地的6名學(xué)生中有4名男同學(xué)和2名女同學(xué),需從中隨機選出2名同學(xué)擔(dān)任“小導(dǎo)游”,請用樹狀圖或列舉法求這2名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,拋物線與x軸的另一交點為B.
(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑;
(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y1=﹣x+3與x軸交于點B,與y軸交于點C,拋物y2=ax2+bx+c經(jīng)過點B,C并與x軸交于點A(﹣1,0).
(1)求拋物線解析式,并求出拋物線的頂點D坐標 ;
(2)當y2<0時、請直接寫出x的取值范圍 ;
(3)當y1<y2時、請直接寫出x的取值范圍 ;
(4)將拋物線y2向下平移,使得頂點D落到直線BC上,求平移后的拋物線解析式 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com