【題目】如圖,在圓⊙O中,將弧AB沿弦AB折疊,使弧AB恰好經(jīng)過圓心O,點P是優(yōu)弧AMB上一點,則∠APB的度數(shù)為_________

【答案】60o

【解析】分析:作半徑OCABD,連結(jié)OA、OB,如圖,根據(jù)折疊的性質(zhì)得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關(guān)系得到∠OAD=30°,接著根據(jù)三角形內(nèi)角和定理可計算出∠AOB=120°,

然后根據(jù)圓周角定理計算∠APB的度數(shù).

如圖,作半徑OCABD,連結(jié)OA、OB

∵將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,

OD=CD,

OD= OC= OA

∴∠OAD=30°,

OA=OB,

∴∠OBA=30°,

∴∠AOB=120°,

∴∠APB= AOB=60°

故答案為120°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從正五邊形的五個頂點中,任取四個頂點連成四邊形,對于事件M:“這個四邊形是等腰梯形.下列判斷正確的是(

A. 事件M是不可能事件 B. 事件M是必然事件

C. 事件M發(fā)生的概率為 D. 事件M發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求兩個正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時,此時的差(或減數(shù))即為這兩個正整數(shù)的最大公約數(shù).

例如:求91與56的最大公約數(shù)

解:

請用以上方法解決下列問題:

(1)求108與45的最大公約數(shù);

(2)求三個數(shù)78、104、143的最大公約數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公共汽車行駛在筆直的公路上,這條路上有四個站點,每相鄰兩站之間的距離為千米,從站開往站的車稱為上行車,從站開往站的車稱為下行車.第一班上行車、下行車分別從站、站同時發(fā)車,相向而行,且以后上行車、下行車每隔分鐘分別在站同時發(fā)一班車,乘客只能到站點上、下車(上、下車的時間忽略不計),上行車、 下行車的速度均為千米/小時.

第一班上行車到站、第一班下行車到站分別用時多少?

第一班上行車與第一班下行車發(fā)車后多少小時相距千米?

一乘客在兩站之間的處,剛好遇到上行車,千米,他從處以千米/小時的速度步行到站乘下行車前往站辦事.

①若千米,乘客從處到達站的時間最少要幾分鐘?

②若千米,乘客從處到達站的時間最少要幾分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:

1)填寫下表:

圖形序號

小圓個數(shù)

2)照這樣的規(guī)律搭下去,擺個這樣的圖形需要 個小圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,線段ABCD相交于點O,連結(jié)AD、CB,我們把形如圖1的圖形稱之為“8字形”.如圖2,在圖1的條件下,∠DAB和∠BCD的平分線APCP相交于點P,并且與CD、AB分別相交于點MN.試解答下列問題:

(1)在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系;

(2)仔細(xì)觀察,在圖2中“8字形”有多少個;

(3)圖2中,當(dāng)∠D50°,∠B40°時,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABCBDE都是等邊三角形.則下列結(jié)論:

AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等邊三角形;⑤FGAD.其中正確的有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料;我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)0對應(yīng)點之間的距離.這個結(jié)論可以推廣為:表示在數(shù)軸上數(shù)對應(yīng)點之間的距離.例:已知,求的值.

解:在數(shù)軸上與1的距離為2的點對應(yīng)數(shù)為3,即的值為3

仿照閱讀材料的解法,解決下列問題:

1)已知,的值為__________;

2)若數(shù)軸上表示的點在2之間,則的值為__________;

3)當(dāng)滿足什么條件時,有最小值,最小值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點對應(yīng)的數(shù)是,點對應(yīng)的數(shù)是,一只小蟲從點出發(fā)沿著數(shù)軸的正方向以每秒個單位的速度爬行至點,又立即返回到點,共用了秒鐘.

對應(yīng)的數(shù)是_

若小蟲返回到點后再作如下運動:第一次向右爬行個單位,第次向左爬行個單位,第三次向右爬行個單位,第四次向左爬行個單位,..依此規(guī)律爬下去, 它第次爬行所停的點所對應(yīng)的數(shù)是

次爬行所停的點所對應(yīng)的數(shù)是

的條件下,求小蟲第次爬行所停的點所對應(yīng)的數(shù).

查看答案和解析>>

同步練習(xí)冊答案