【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,﹣1),圖象與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)設(shè)拋物線對稱軸與直線BC交于點D,連接AC、AD,點E為直線BC上的任意一點,過點E作x軸的垂線與拋物線交于點F,問是否存在點E使△DEF為直角三角形?若存在,求出點E坐標,若不存在,請說明理由.
【答案】(1)y=x2﹣4x+3;(2)存在滿足條件的點E,其坐標為(2+,1﹣)或(2﹣,1+)或(1,2)或(4,﹣1),理由見解析
【解析】
(1)可設(shè)拋物線解析式為頂點式y=a(x-2)2-1(a≠0),把C點坐標代入上式,可求得a的值,進而求得拋物線解析式;
(2)根據(jù)題意可分∠DFE=90°和∠EDF=90°兩種情況,當∠DFE=90°時,可知DF∥x軸,則可求得E點橫坐標,代入直線BC解析式可求得E點坐標;當∠EDF=90°時,可知:點F在直線AD上,求出直線AD解析式,聯(lián)立直線AD和拋物線解析式可求得點E的橫坐標,代入直線BC可求得點E的坐標.
(1)∵拋物線的頂點坐標為(2,﹣1),
∴可設(shè)拋物線解析式為y=a(x﹣2)2﹣1(a≠0),
把C(0,3)代入可得:a(0﹣2)2﹣1=3,解得a=1,
∴拋物線解析式為y=(x﹣2)2﹣1=x2﹣4x+3;
(2)在y=x2﹣4x+3中,令y=0可得x2﹣4x+3=0,解得x=1或x=3,
∴A(1,0),B(3,0),
設(shè)直線BC解析式為y=kx+3,把B(3,0)代入得:3k+3=0,解得k=﹣1,
∴直線BC解析式為y=﹣x+3,
由(1)可知拋物線的對稱軸為:直線x=2,此時y=﹣2+3=1,
∴D(2,1),
∴AD2=2,AC2=10,CD2=8,
∵AD2+CD2=AC2,
∴∠ADC=90°,
由題意知EF∥y軸,則∠FED=∠OCB≠90°,
∴△DEF為直角三角形,分∠DFE=90°和∠EDF=90°兩種情況,
①當∠DFE=90°時,即DF∥x軸,則D、F的縱坐標相同,如圖1,
∴F點縱坐標為1,
∵點F在拋物線上,
∴x2﹣4x+3=1,解得x=2±,即點E的橫坐標為2±,
∵點E在直線BC上,
∴當x=2+時,y=﹣x+3=1﹣,
當x=2﹣時,y=﹣x+3=1+,
∴E點坐標為(2+,1﹣)或(2﹣,1+);
②當∠EDF=90°時,且∠ADC=90°,如圖2,
∴點F在直線AD上,
∵A(1,0),D(2,1),
∴直線AD解析式為y=x﹣1,
∴直線AD與拋物線的交點即為F點,
聯(lián)立直線AD與拋物線解析式得:x2﹣4x+3=x﹣1,解得x=1或x=4,
當x=1時,y=﹣x+3=2,
當x=4時,y=﹣x+3=﹣1,
∴E點坐標為(1,2)或(4,﹣1),
綜上可知存在滿足條件的點E,其坐標為(2+,1﹣)或(2﹣,1+)或(1,2)或(4,﹣1).
圖1 圖2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家一種摩托車如圖所示,它的大燈A射出的光線AB、AC與地面MN的夾角分別為8°和10°.
(1)該車大燈照亮地面的寬度BC是1.4m,求大燈A與地面距離約是多少?
(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應(yīng)時間是0.2s,從發(fā)現(xiàn)危險到摩托車完全停下所行駛的距離叫做最小安全距離,某人以60km/h的速度駕駛該車,突然遇到危險情況,立即剎車直到摩托車停止,在這個過程剎車距離是m,請判斷(1)中的該車大燈A的地面高度是否能滿足最小安全距離的要去,若不能該如何調(diào)整A的高度?(參考數(shù)據(jù):sin8°≈,tan8°≈,sin10°≈,tan10°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(點在點的左側(cè)),與軸交于點,且,頂點為.
(1)求二次函數(shù)的解析式;
(2)點為線段上的一個動點,過點作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)探索:線段上是否存在點,使為等腰三角形?如果存在,求出點的坐標;如果不存在,請說呀理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當x≤3時,函數(shù)y=x2﹣2x﹣3的圖象記為G,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M,若直線y=x+b與圖象M有且只有兩個公共點,則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=600,則AE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)
(2)如圖,小方在清明假期中到郊外放風(fēng)箏,風(fēng)箏飛到C 處時的線長BC為20米,此時小方正好站在A處,并測得∠CBD=60°,牽引底端B離地面1.5米,求此時風(fēng)箏離地面的高度.(,,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為,與軸的一個交點在和之間,其部分圖象如圖所示,則下列結(jié)論:(1):(2);(3)(為任意實數(shù));(4);5)點是該拋物線上的點,且,其中正確結(jié)論的個數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC內(nèi)接于圓O,D為弧AC上一點,分別連接AD、BD、CD,且∠ACB=90°﹣∠BAD.
(1)如圖1,求證:AB=AD;
(2)如圖2,在CD延長線上取點E,連接AE,使AE=AD,過E作EF垂直BD的延長線于點F,過C作CG⊥EC交EF延長線于點G,設(shè)圓O半徑為r,求證:EG=2r;
(3)如圖3,在(2)的條件下,連接DG,若AC=BC,DE=4CD,當△ACD的面積為10時,求DG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com