【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點(diǎn),直線AB與x軸相交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(﹣6,m),線段OA=5,E為x軸正半軸上一點(diǎn),且cos∠AOE=

(1)求反比例函數(shù)的解析式;
(2)求證:SAOC=2SBOC;
(3)直接寫出當(dāng)y1>y2時(shí),x的取值范圍.

【答案】
(1)解:

過點(diǎn)A作AD⊥x軸于點(diǎn)D

∵cos∠AOE= =

∴OD=3

∴AD= =4

∴A(3,4)

將點(diǎn)A的坐標(biāo)代入反比例函數(shù)y2= 得,a=12

∴反比例函數(shù)解析式為


(2)解:將點(diǎn)B(﹣6,m)代入反比例函數(shù) 得,m=﹣2

∴B(﹣6,﹣2)

將A(3,4),B(﹣6,m)代入一次函數(shù)y1=kx+b,得

,解得

∴一次函數(shù)解析式為

當(dāng)y=0時(shí), ,即x=﹣3

∴C(﹣3,0)

∴OC=3

∴△AOC的面積= ×3×4=6

△BOC的面積= ×3×2=3

∴SAOC=2SBOC


(3)解:當(dāng)y1>y2時(shí),x的取值范圍為﹣6<x<0或x>3.
【解析】(1)通過解直角三角形求出點(diǎn)A的坐標(biāo),進(jìn)而得出反比例函數(shù)解析式;(2)先根據(jù)反比例函數(shù)解析式求得點(diǎn)B的坐標(biāo),再由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法求出直線AB的解析式,進(jìn)而得到OC的長,最后計(jì)算△AOC和△BOC的面積并得出結(jié)論;(3)結(jié)合兩函數(shù)圖象,找出反比例函數(shù)圖象在一次函數(shù)圖象下方時(shí)x的取值范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.

(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的棱長為1的正方體中,A,B,C,D,E是正方體的頂點(diǎn),M是棱CD的中點(diǎn).動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿著D→A→B的路線在正方體的棱上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)B停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程是x,y=PM+PE,則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AD=18,點(diǎn)E在AC上且CE= AC,連接BE,與AD相交于點(diǎn)F.若BE=15,則△DBF的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=ax2+bx+c如圖所示,下列四個(gè)結(jié)論:
①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正確結(jié)論的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=8,點(diǎn)E,F(xiàn)分別在AB,AD上,且AE=AF,過點(diǎn)E作EG∥AD交CD于點(diǎn)G,過點(diǎn)F作FH∥AB交BC于點(diǎn)H,EG與FH交于點(diǎn)O.當(dāng)四邊形AEOF與四邊形CGOH的周長之差為12時(shí),AE的值為(
A.6.5
B.6
C.5.5
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=BC,以AB為直徑的圓交AC于點(diǎn)D,過點(diǎn)D的⊙O的切線交BC于點(diǎn)E.若CD=5,CE=4,則⊙O的半徑是(
A.3
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M為OA的中點(diǎn),OA=6,OB=8,將△COD繞O點(diǎn)旋轉(zhuǎn),連接AD,CB交于P點(diǎn),連接MP,則MP的最大值( )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在等腰△ABC中,AB=AC,F(xiàn)為AB邊上的中點(diǎn),延長CB至D,使得BD=BC,連接AD交CF的延長線于E.
(1)如圖1,若∠BAC=60°,求證:△CED為等腰三角形

(2)如圖2,若∠BAC≠60°,(1)中結(jié)論還成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由.

(3)如圖3,當(dāng) =是(直接填空),△CED為等腰直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案