【題目】今年汶川車厘子喜獲豐收,車厘子一上市,水果店的王老板用2500元購進一批車厘子,很快售完;老板又用4400元購進第二批車厘子,所購數(shù)量是第一批的2倍,由于進貨量增加,進價比第一批每干克少了3元.

l)第一批車厘子每千克進價多少元?.

2)該老板在銷售第二批車厘子時,售價在第二批進價的基礎上增加了,售出后,為了盡快售完,決定將剩余車厘子在第二批進價的基礎上每千克降價元進行促銷,結果第二批車厘子的銷售利潤為1520元,求的值。(利潤=售價一進價)

【答案】125元;(250.

【解析】

1)設第一批車厘子每千克進價是x元,則第二批每件進價是(x-3)元,再根據(jù)等量關系:第二批葡萄所購件數(shù)是第一批的2倍列方程求解即可;

2)根據(jù)第一階段的利潤+第二階段的利潤=1520列方程求解即可

1)設第一批車厘子每千克進價x元,

根據(jù)題意,得:

解得x=25

經檢驗,x=25是原方程的解且符合題意.

答:第一批車厘子每千克進價是25元.

2)第二次進價:25-3=22(元)

第二次車厘子的實際進貨量:4400÷22=200千克.

第二次進貨的第一階段出售每千克的利潤為:22×a%元;

第二次車厘子第二階段銷售利潤為每千克-千克;

依題意得:

解得 a=50

a的值是50

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EFAD,ADBC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,則∠FEC=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組在探索“各內角都相等的圓內接多邊形是否為正多邊形”時,進行如下討論:

甲同學:這種多邊形不一定是正多邊形,如圓內接矩形.

乙同學:我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊形,如圖1,ABC是正三角形, ,證明六邊形ADBECF的各內角相等,但它未必是正六邊形.

丙同學:我能證明,邊數(shù)是5時,它是正多邊形,我想…,邊數(shù)是7時,它可能也是正多邊形.

(1)請你說明乙同學構造的六邊形各內角相等;

(2)請你證明,各內角都相等的圓內接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)

(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級800名學生期中數(shù)學考試情況,從中抽取了100名學生的數(shù)學成績進行了統(tǒng)計.下面5個判斷中正確的有( 。

①這種調查方式是抽樣調查;②800名學生是總體:③每名學生的數(shù)學成績是個體④100名學生是總體的一個樣本;⑤樣本容量是100

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,且面積是24,的垂直平分線分別交邊于點,若點邊的中點,點為線段上一動點,則周長的最小值為(

A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AB、AC于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,射線AP交邊BC于點D.下列說法錯誤的是( 。

A. B. ,則點DAB的距離為2

C. ,則D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB、AC的垂直平分線l1、l2相交于點O,若∠BAC等于82°,則∠OBC等于( 。

A. 8°B. 9°C. 10°D. 11°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABE中,∠AEB=90°,點F是邊AE上的一點,DEF的中點,過點FBE的平行線交BD的延長線于點C.若CF=AF,BE=6cm,DE=3cm,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圖中的正方形中剪去一個邊長為2ab的正方形,將剩余的部分按圖的方式拼成一個長方形.

(1)求剪去正方形的面積;

(2)求拼成的長方形的長、寬以及它的面積.

查看答案和解析>>

同步練習冊答案