【題目】已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.
(1)如圖1,當(dāng)OB、OC重合時,求∠AOE﹣∠BOF的值;
(2)如圖2,當(dāng)∠COD從圖1所示位置繞點O以每秒3°的速度順時針旋轉(zhuǎn)t秒(0<t<10),在旋轉(zhuǎn)過程中∠AOE﹣∠BOF的值是否會因t的變化而變化?若不發(fā)生變化,請求出該定值;若發(fā)生變化,請說明理由.
(3)在(2)的條件下,當(dāng)∠COF=14°時,t= 秒.
【答案】(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由詳見解析;(3).
【解析】
(1)首先根據(jù)角平分線的定義求得∠AOE和∠BOF的度數(shù),然后根據(jù)∠AOE﹣∠BOF求解;
(2)首先由題意得∠BOC=3t°,再根據(jù)角平分線的定義得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分線的定義解答即可;
(3)根據(jù)題意得∠BOF=(3t+14)°,故,解方程即可求出t的值.
解:(1)∵OE平分∠AOC,OF平分∠BOD,
∴=55°,,
∴∠AOE﹣∠BOF=55°﹣20°=35°;
(2)∠AOE﹣∠BOF的值是定值
由題意∠BOC=3t°,
則∠AOC=∠AOB+3t°=110°+3t°,∠BOD=∠COD+3t°=40°+3t°,
∵OE平分∠AOC,OF平分∠BOD,
∴,
∴,
∴∠AOE﹣∠BOF的值是定值,定值為35°;
(3)根據(jù)題意得∠BOF=(3t+14)°,
∴,
解得.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1,另兩張直角三角形紙片的面積都為S2,中間一張正方形紙片的面積為S3,則這個平行四邊形的面積可以表示為( )
A. 4S1B. 4S2C. 4S2+S3D. 2S1+8S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線AB與x軸相交于點C,AD⊥x軸于點D.
(1)m= ;
(2)求點C的坐標(biāo);
(3)在x軸上是否存在點E,使以A、B、E為頂點的三角形與△ACD相似?若存在,求出點E的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(感知)如圖①,四邊形、均為正方形.與的數(shù)量關(guān)系為________;
(2)(拓展)如圖②,四邊形、均為菱形,且.請判斷與的數(shù)量關(guān)系,并說明理由;
(3)(應(yīng)用)如圖③,四邊形、均為菱形,點在邊上,點在延長線上.若,,的面積為9,則菱形的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+與x軸、y軸分別交于點A、B,在坐標(biāo)軸上找點P,使△ABP為等腰三角形,則點P的個數(shù)為( )
A. 2B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上的A1,A2,A3,A4,……A20,這20個點所表示的數(shù)分別是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.
(1)線段A3A4的長度= ;a2= ;
(2)若|a1﹣x|=a2+a4,求x的值;
(3)線段MN從O點出發(fā)向右運動,當(dāng)線段MN與線段A1A20開始有重疊部分到完全沒有重疊部分經(jīng)歷了9秒.若線段MN=5,求線段MN的運動速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年我市加大中職教育投入力度,取得了良好的社會效果.某校隨機調(diào)查了九年級m名學(xué)生的升學(xué)意向,并根據(jù)調(diào)查結(jié)果繪制出如下兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中的信息解答下列問題:
(1)m=______ ;
(2)扇形統(tǒng)計圖中“職高”對應(yīng)的扇形的圓心角α=______ ;
(3)請補全條形統(tǒng)計圖;
(4)若該校九年級有學(xué)生900人,估計該校共有多少名畢業(yè)生的升學(xué)意向是職高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知直線y=﹣x+8與x軸、y軸分別交于A、B兩點.直線OD⊥直線AB于點D.現(xiàn)有一點P從點D出發(fā),沿線段DO向點O運動,另一點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)點P運動到O時,兩點都停止.設(shè)運動時間為t秒.
(1)點A的坐標(biāo)為_____;線段OD的長為_____.
(2)設(shè)△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系(不要求寫出取值范圍),并確定t為何值時S的值最大?
(3)是否存在某一時刻t,使得△OPQ為等腰三角形?若存在,寫出所有滿足條件的t的值;若不存在,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 觀察下列兩個等式:2+2=2×2,3+=3×,給出定義如下:我們稱使等式a+b=ab成立的一對有理數(shù)a,b為“有趣數(shù)對”,記為(a,b)如:數(shù)對(2,2),(3,)都是“有趣數(shù)對”.
(1)數(shù)對(0,0),(5,)中是“有趣數(shù)對”的是 ;
(2)若(a,)是“有趣數(shù)對”,求a的值;
(3)請再寫出一對符合條件的“有趣數(shù)對” ;
(注意:不能與題目中已有的“有趣數(shù)對”重復(fù))
(4)若(a2+a,4)是“有趣數(shù)對”求3﹣2a2﹣2a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com