【題目】如圖,反比例函數(shù)與一次函數(shù)y=x+b的圖象,都經(jīng)過點(diǎn)A(1,2)
(1)試確定反比例函數(shù)和一次函數(shù)的解析式;
(2)求一次函數(shù)圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo).
【答案】(1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為y=x+1.
(2)(-1,0)與(1,0).
【解析】
(1)將點(diǎn)A(1,2)分別代入與y=x+b中,運(yùn)用待定系數(shù)法即可確定出反比例解析式和一次函數(shù)解析式.
(2)對于一次函數(shù)解析式,令x=0,求出對應(yīng)y的值,得到一次函數(shù)與y軸交點(diǎn)的縱坐標(biāo),確定出一次函數(shù)與y軸的交點(diǎn)坐標(biāo);令y=0,求出對應(yīng)x的值,得到一次函數(shù)與x軸交點(diǎn)的橫坐標(biāo),確定出一次函數(shù)與x軸的交點(diǎn)坐標(biāo).
解: (1)∵反比例函數(shù)與一次函數(shù)y=x+b的圖象,都經(jīng)過點(diǎn)A(1,2),
∴將x=1,y=2代入反比例解析式得:k=1×2=2,
將x=1,y=2代入一次函數(shù)解析式得:b=2-1=1,
∴反比例函數(shù)的解析式為,一次函數(shù)的解析式為y=x+1.
(2)對于一次函數(shù)y=x+1,
令y=0,可得x=-1;令x=0,可得y=1.
∴一次函數(shù)圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)為(-1,0)與(1,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)和的圖象關(guān)于原點(diǎn)成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)和互為中心對稱函數(shù).
求函數(shù)的中心對稱函數(shù);
如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,,二次函數(shù)的圖象經(jīng)過點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)和互為中心對稱函數(shù);
請?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫出函數(shù)的大致圖象;
當(dāng)四邊形EPFQ是矩形時,請求出a的值;
已知二次函數(shù)和互為中心對稱函數(shù),且的圖象經(jīng)過的頂點(diǎn)當(dāng)時,求代數(shù)式的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).
(1)求一次函數(shù)的解析式;
(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B,C,連接AB,若△ABC是等腰直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,已知,與相交于點(diǎn),與相交于點(diǎn),與相交于點(diǎn).
(1)如圖,觀察并猜想和有怎樣的數(shù)量關(guān)系?并說明理由.
(2)箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形. 如上圖,證明四邊形是箏形.
(3)如圖,若,其他條件不變,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料:
我們已經(jīng)學(xué)過將一個多項(xiàng)式分解因式的方法有提公因式法和運(yùn)用公式法,其實(shí)分解因式的方法還有分組分解法、拆項(xiàng)法、十字相乘法等等.
(1)分組分解法:將一個多項(xiàng)式適當(dāng)分組后,可提公因式或運(yùn)用公式繼續(xù)分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
2xy+y2﹣1+x2
=x2+2xy+y2﹣1
=(x+y)2﹣1
=(x+y+1)(x+y﹣1)
(2)拆項(xiàng)法:將一個多項(xiàng)式的某一項(xiàng)拆成兩項(xiàng)后,可提公因式或運(yùn)用公式繼續(xù)分解的方法.如:
x2+2x﹣3
=x2+2x+1﹣4
=(x+1)2﹣22
=(x+1+2)(x+1﹣2)
=(x+3)(x﹣1)
請你仿照以上方法,探索并解決下列問題:
(1)分解因式:
(2)分解因式:x2﹣6x﹣7;
(3)分解因式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線上.
若,,求的值;
若此拋物線經(jīng)過點(diǎn),且二次函數(shù)的最小值是,請畫出點(diǎn)的縱坐標(biāo)隨橫坐標(biāo)變化的圖象,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與反比例函數(shù)的圖象交于點(diǎn),過作軸于點(diǎn),且
求的值;
點(diǎn)是反比例函圖象上的點(diǎn),在軸上是否存在點(diǎn),使得最小?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,,垂直,點(diǎn)、、在一條直線上,且與恰好關(guān)于所在直線成軸對稱.已知,正方形邊長為.
圖中可以繞點(diǎn)________按________時針方向旋轉(zhuǎn)________后能夠與________重合;
寫出圖中所有形狀、大小都相等的三角形________;
用、的代數(shù)式表示與的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,分別是,的中點(diǎn),是對角線,交延長線于.若四邊形是菱形,則四邊形是( )
A. 平行四邊形 B. 矩形
C. 菱形 D. 正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com