【題目】如圖1,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點.
(1)求拋物線的函數(shù)表達式;
(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;
(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標;
(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標.
【答案】(1);(2)△BPC面積的最大值為 ;(3)D的坐標為(0,1)或(0,);(4)M(,0),N(0,)
【解析】
(1)拋物線的表達式為:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;
(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;
(3)B、C、D為頂點的三角形與△ABC相似有兩種情況,分別求解即可;
(4)作點E關(guān)于y軸的對稱點E′(-2,9),作點F(2,9)關(guān)于x軸的對稱點F′(3,-8),連接E′、F′分別交x、y軸于點M、N,此時,四邊形EFMN的周長最小,即可求解.
解:(1)把,分別代入得:
∴
∴拋物線的表達式為:.
(2)如圖,過點P作PH⊥OB交BC于點H
令x=0,得y=5
∴C(0,5),而B(5,0)
∴設(shè)直線BC的表達式為:
∴
∴
設(shè),則
∴
∴
∴
∴△BPC面積的最大值為.
(3)如圖,∵ C(0,5),B(5,0)
∴OC=OB,
∴∠OBC=∠OCB=45°
∴AB=6,BC=
要使△BCD與△ABC相似
則有或
①當時
∴
則
∴D(0,)
② 當時,
CD=AB=6,
∴D(0,1)
即:D的坐標為(0,1)或(0,)
(4)∵
∵E為拋物線的頂點,
∴E(2,9)
如圖,作點E關(guān)于y軸的對稱點E'(﹣2,9),
∵span>F(3,a)在拋物線上,
∴F(3,8),
∴作點F關(guān)于x軸的對稱點F'(3,8),
則直線E' F'與x軸、y軸的交點即為點M、N
設(shè)直線E' F'的解析式為:
則
∴
∴直線E' F'的解析式為:
∴,0),N(0,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點I是△ABC的內(nèi)心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為( 。
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O點,則下列結(jié)論:①CF=BE;②∠COB=120°;③OA平分∠FOE;④OF=OA+OB.其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推進“全國億萬學生陽光體育運動”的實施,組織廣大同學開展健康向上的第二課堂活動.我市某中學準備組建球類社團(足球、籃球、羽毛球、乒乓球)、舞蹈社團、健美操社團、武術(shù)社團,為了解在校學生對這4個社團活動的喜愛情況,該校隨機抽取部分初中生進行了“你最喜歡哪個社團”調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題:
(1)求樣本容量及表格中、的值;
(2)請補全統(tǒng)計圖;
(3)被調(diào)查的60個喜歡球類同學中有3人最喜歡足球,若該校有3000名學生,請估計該校最喜歡足球的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全面二孩政策于2016年1月1日正式實施,黔南州某中學對八年級部分學生進行了隨機問卷調(diào)查,其中一個問題“你爸媽如果給你添一個弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個選項(要求僅選擇一個選項):
A.非常愿意 B.愿意 C.不愿意 D.無所謂
如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中信息解答以下問題:
(1)試問本次問卷調(diào)查一共調(diào)查了多少名學生?并補全條形統(tǒng)計圖;
(2)若該年級共有450名學生,請你估計全年級可能有多少名學生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個弟弟(或妹妹)?
(3)在年級活動課上,老師決定從本次調(diào)查回答“不愿意”的同學中隨機選取2名同學來談?wù)勊麄兊南敕ǎ敬握{(diào)查回答“不愿意”的這些同學中只有一名男同學,請用畫樹狀圖或列表的方法求選取到兩名同學中剛好有這位男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國防教育和素質(zhì)拓展期間,某天小明和小亮分別從校園某條路的A,B兩端同時相向出發(fā),當小明和小亮第一次相遇時,小明覺得自己的速度太慢便決定提速至原速的倍,當他到達B端后原地休息,小亮勻速到達A端后,立即按照原速返回B端(忽略掉頭時間).兩人相距的路程y(米)與小亮出發(fā)時間t(秒)之間的關(guān)系如圖所示,當小明到達B端后,經(jīng)過_____秒,小亮回到B端.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,是直徑,點是上一點,點是弧的中點,于點,過點的切線交的延長線于點,連接,分別交,于點.連接,關(guān)于下列結(jié)論:① ;②;③點是的外心,其中正確結(jié)論是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知PA,PB是⊙O的兩條切線,A,B為切點.C是⊙O上一個動點.且不與A,B重合.若∠PAC=α,∠ABC=β,則α與β的關(guān)系是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com