【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C上,CDOA,垂足為點D,當△OCD的面積最大時,圖中陰影部分的面積為_____

【答案】2π-4

【解析】

OC4,點C上,CDOA,求得DC,運用SOCDOD,求得OD時△OCD的面積最大,運用陰影部分的面積扇形AOC的面積-△OCD的面積求解.

OC4,點C上,CDOA,∴DC,∴SOCDOD,∴SOCD2OD216OD2)=-OD44OD2=-OD28216∴當OD28,即OD2時△OCD的面積最大,∴DC2,∴∠COA45°,∴陰影部分的面積扇形AOC的面積-△OCD的面積42π4,故答案為2π4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,AB4,BC5CA6.

(1)如果DE10,那么當EF________,FD________時,△DEF∽△ABC

(2)如果DE10,那么當EF________FD________時,△FDE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且tan∠BOA=

(1)求邊AB的長;

(2)求反比例函數(shù)的解析式和n的值;

(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求線段OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.

(1)求直線BM的解析式;

(2)求過A、M、B三點的拋物線的解析式;

(3)在(2)中的拋物線上是否存在點P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個符合條件的P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)如圖,AB是半圓O的直徑,點P是半圓上不與點AB重合的一個動點,延長BP到點C,使PC=PB,DAC的中點,連接PD,PO.

1)求證:△CDP≌△POB;

2)填空:

AB=4,則四邊形AOPD的最大面積為 ;

連接OD,當∠PBA的度數(shù)為 時,四邊形BPDO是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當4≤x≤10時,yx成反比例).

1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段yx之間的函數(shù)關(guān)系式.

2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時間多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】名聞遐邇的采花毛尖明前茶,成本每廳400元,某茶場今年春天試營銷,每周的銷售量y(斤)是銷售單價x(元/斤)的一次函數(shù),且滿足如下關(guān)系:

x(元/斤)

450

500

600

y(斤)

350

300

200

1)請根據(jù)表中的數(shù)據(jù)求出yx之間的函數(shù)關(guān)系式;

2)若銷售每斤茶葉獲利不能超過40%,該茶場每周獲利不少于30000元,試確定銷售單價x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,ABC 頂點 A2,3).若以原點 O 為位似中心,畫三角形 ABC

的位似圖形A′B′C′,使ABC A′B′C′的相似比為,則 A′的坐標為(

A. (3, ) B. ( ,6) C. (3, )(-3,- ) D. ( ,6)(- ,-6)

查看答案和解析>>

同步練習冊答案