【題目】如圖,在△ABC中,AD平分∠BAC,CD⊥AD于點D,∠DCB=∠B.若AC=10,AB=25,求CD的長.

【答案】解:如圖,延長CD交AB于點E.
∵AD平分∠BAC,
∴∠1=∠2.
∵CD⊥AD,
∴∠ADE=∠ADC=90°.
∵在△ADE與△ADC中,
,
∴△ADE≌△ADC(ASA).
∴AE=AC=10,DE=DC.
∵∠DCB=∠B,
∴BE=CE=2DC.
∴AB=AE+BE=10+2DC=25.
∴DC=7.5.
【解析】如圖,延長CD交AB于點E,構(gòu)建全等三角形:△ADE≌△ADC(ASA).由全等三角形的對應(yīng)邊相等推知AE=AC=10,DE=DC;根據(jù)BE=CE,AB=25,得出AB=AE+BE=10+2DC=25,即可求得DC=7.5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知3x42(3x),則|x1|的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】∠1與∠2是直線a、b被直線c所截得的同位角,∠1與∠2的大小關(guān)系是(
A.∠1=∠2
B.∠1>∠2
C.∠1<∠2
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已點A(3,0)、B(﹣5,3),將點A向左平移6個單位到達(dá)C點,將點B向下平移6個單位到達(dá)D點.
(1)寫出C點、D點的坐標(biāo):C , D
(2)把這些點按A﹣B﹣C﹣D﹣A順次連接起來,這個圖形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=3,b2=25,且a<0,求a–b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),設(shè)計開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):

根據(jù)統(tǒng)計圖中的信息,解答下列問題:

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)將條形圖補(bǔ)充完整;

(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列表格,估計一元二次方程x23x50的正數(shù)解在( 。

x

1

0

1

2

3

4

x23x5

7

5

1

5

13

23

A.10之間B.01之間C.12之間D.23之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把三張大小相同的正方形卡片A、B、C疊放在一個底面為正方形的盒底上,底面未被卡片覆蓋的部分用陰影表示,若按圖1擺放時,陰影部分的面積為S1;若按圖2擺放時,陰影部分的面積為S2 , 則S1與S2的大小關(guān)系是( )

A.S1>S2
B.S1<S2
C.S1=S2
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)x3xx2
(2)(﹣a32(﹣a23
(3)|﹣2|﹣( 2+(π﹣3)0﹣(﹣1)2017
(4)(p﹣q)3(q﹣p)4÷(q﹣p)2

查看答案和解析>>

同步練習(xí)冊答案