【題目】(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點.且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關系.

小王同學探究此問題的方法是,延長FD到點G.使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應是 ;

(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點,且∠EAF=∠BAD上述結(jié)論是否仍然成立,并說明理由;

(3)如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.

【答案】問題背景:EF=BE+DF;

探索延伸:EFBEDF仍然成立,理由見解析;

實際應用:此時兩艦艇之間的距離是210海里.

【解析】解:問題背景:EFBEDF;

探索延伸:EFBEDF仍然成立.

證明如下:如圖,延長FDG,使DGBE,連接AG

∵∠BADC180°,ADCADG180°∴∠BADG,

ABEADG中,∴△ABE≌△ADGSAS),

AEAGBAEDAG,

∵∠EAFBAD,

∴∠GAFDAGDAFBAEDAFBADEAFEAF∴∠EAFGAF,

AEFGAF中,,∴△AEF≌△GAFSAS),EFFG,

FGDGDFBEDF,EFBEDF;

實際應用:如圖,連接EF,延長AE、BF相交于點C,

∵∠AOB30°90°+(90°70°)=140°EOF70°,∴∠EAFAOB,

又∵OAOBOACOBC=(90°30°)+(70°50°)=180°,∴符合探索延伸中的條件,

∴結(jié)論EFAEBF成立,即EF1.5×6080)=210海里.

答:此時兩艦艇之間的距離是210海里.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】古希臘數(shù)學家把1,3,6,10,15,21叫做三角數(shù),它有一定的規(guī)律性,若把第一個三角數(shù)記為a1,第二個三角數(shù)記為a2,, n個三角數(shù)記為an,計算a1+a2,a2+a3,a3+a4,,由此推算a199+a200的值為(

A. 20000 B. 40000 C. 39701 D. 19701

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016廣西省賀州市第24題)某地區(qū)2014年投入教育經(jīng)費2900萬元,2016年投入教育經(jīng)費3509萬元.

(1)求2014年至2016年該地區(qū)投入教育經(jīng)費的年平均增長率;

(2)按照義務教育法規(guī)定,教育經(jīng)費的投入不低于國民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國民生產(chǎn)總值的增長情況,該地區(qū)到2018年需投入教育經(jīng)費4250萬元,如果按(1)中教育經(jīng)費投入的增長率,到2018年該地區(qū)投入的教育經(jīng)費是否能達到4250萬元?請說明理由.

(參考數(shù)據(jù): =1.1, =1.2, =1.3, =1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC,∠A36°,以點A為位似中心,把ABC放大3倍后得到AEF,則∠E__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】jiǒng)是網(wǎng)絡的一個流行語,像一個人臉郁悶的神情,如圖所示,一張邊長為20的正方形紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個字圖案(陰影部分).設剪去的小長方形長和寬分別為、,剪去的兩個小直角三角形的兩直角邊長也分別為、.

1)用含有的式子表示圖中的面積.

2)當、時,求此時的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下各組線段為邊,能組成三角形的是( )
A.2cm,4cm,6cm
B.8cm,6cm,4cm
C.14cm,6cm,7cm
D.2cm,3cm,6em

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016四川省樂山市第22題)“六一”期間,小張購進100只兩種型號的文具進行銷售,其進價和售價之間的關系如下表:

(1)小張如何進貨,使進貨款恰好為1300元?

(2)要使銷售文具所獲利潤最大,且所獲利潤不超過進貨價格的40%,請你幫小張設計一個進貨方案,并求出其所獲利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程(m﹣5)x2+2x+2=0有實根,則m的最大整數(shù)解是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC與△DEF相似且周長比為2:5,則△ABC與△DEF的相似比為

查看答案和解析>>

同步練習冊答案