【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A=90°,點(diǎn)D在線段BC上(端點(diǎn)B除外),
∠EDB=∠C,BE⊥DE于點(diǎn)E,DE與AB相交于點(diǎn)F,過F作FM∥AC交BD于M.
(1)當(dāng)AB=AC時(shí)(如圖1),求證:①FM=MD;②FD=2BE;
(2)當(dāng)AB=kAC時(shí)(k>0,如圖2),用含k的式子表示線段FD與BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=x2向右平移2個(gè)單位,再向上平移1個(gè)單位,所得拋物線相應(yīng)的函數(shù)表達(dá)式是( )
A.y=(x+2)2+1
B.y=(x+2)2﹣1
C.y=(x﹣2)2+1
D.y=(x﹣2)2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知F,G是OA上兩點(diǎn),M,N是OB上兩點(diǎn),且FG=MN,△PFG和△PMN的面積相等.試判斷點(diǎn)P是否在∠AOB的平分線上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為( 。
A. 8 B. 9.5 C. 10 D. 11.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖2,“和諧號(hào)”高鐵列車的小桌板收起時(shí)近似看作與地面垂直,展開小桌板使桌面保持水平時(shí)如圖1,小桌板的邊沿O點(diǎn)與收起時(shí)桌面頂端A點(diǎn)的距離OA=75厘米,此時(shí)CB⊥AO,∠AOB=∠ACB=37°,且支架長OB與支架長BC的長度之和等于OA的長度.
(1)求∠CBO的度數(shù);
(2)求小桌板桌面的寬度BC.(參考數(shù)據(jù)sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育場(chǎng)看臺(tái)的坡面AB與地面的夾角是37°,看臺(tái)最高點(diǎn)B到地面的垂直距離BC為2.4米,看臺(tái)正前方有一垂直于地面的旗桿DE,在B點(diǎn)用測(cè)角儀測(cè)得旗桿的最高點(diǎn)E的仰角為33°,已知測(cè)角儀BF的高度為1.2米,看臺(tái)最低點(diǎn)A與旗桿底端D之間的距離為15米(C,A,D在同一條直線上).
(1)求看臺(tái)最低點(diǎn)A到最高點(diǎn)B的坡面距離AB;
(2)一面紅旗掛在旗桿上,固定紅旗的上下兩個(gè)掛鉤G、H之間的距離為1.2米,下端掛鉤H與地面的距離為1米,要求用30秒的時(shí)間將紅旗升到旗桿的頂端,求紅旗升起的平均速度(計(jì)算結(jié)果保留兩位小數(shù))(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com