3.下列各式的計算中,正確的是(  )
A.$\sqrt{(-4)×(-9)}$=$\sqrt{-4}$×$\sqrt{-9}$=6B.($\sqrt{3}$-1)2=3-1=2
C.$\sqrt{4{1}^{2}-4{0}^{2}}$=$\sqrt{81}$×$\sqrt{1}$=9D.3$\sqrt{\frac{2}{3}}$=$\sqrt{2}$

分析 根據(jù)二次根式的乘法法則對A進行判斷;根據(jù)完全平方公式對B進行判斷;根據(jù)平方差公式和二次根式的乘法法則對C進行判斷;利用二次根式的性質對D進行判斷.

解答 解:A、原式=$\sqrt{4×9}$=$\sqrt{4}$×$\sqrt{9}$=6,所以A選項錯誤;
B、原式=3-2$\sqrt{3}$+1=4-2$\sqrt{3}$,所以B選項錯誤;
C、原式=$\sqrt{(41+40)×(41-40)}$=$\sqrt{81}$×$\sqrt{1}$=9,所以C選項正確;
D、原式=$\sqrt{6}$,所以D選項錯誤.
故選C.

點評 本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

13.青少年“心理健康“問題越來越引起社會的關注,某中學為了了解學校600名學生的心理健康狀況,舉行了一次“心理健康“知識測試.并隨機抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本,繪制了下面未完成的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).請回答下列問題:
分組頻數(shù)頻率
50.5~60.540.08
60.5~70.5140.28
70.5~80.5160.32
80.5~90.560.12
90.5~100.5100.20
合計501.00
(1)填寫頻數(shù)分布表中的空格,并補全頻數(shù)分布直方圖;
(2)若成績在70分以上(不含70分)為心理健康狀況良好.若心理健康狀況良好的人數(shù)占總人數(shù)的70%以上,就表示該校學生的心理健康狀況正常,否則就需要加強心理輔導.請根據(jù)上述數(shù)據(jù)分析該校學生是否需要加強心理輔導,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.甲種物品每個1kg,乙種物品每個2.5kg,現(xiàn)購買甲種物品x個,乙種物品y個,共30kg.若兩種物品都買,則所有可供購買方案的個數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.在△ABC中,CD⊥AB于點D,∠A=2∠BCD.

(1)如圖1,求證:AB=AC;
(2)如圖2,E是AB上一點,F(xiàn)是AC延長線上一點,連接CE、BF,CE=BF,求證:∠BEC=∠CFB;
(3)如圖3,在(2)的條件下,作EG∥BC交AC于點G,若∠CBF=2∠ACE,EG=2,BC=6,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

18.已知-25a2mb和7b3-na4是同類項,則m+n的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.在$\sqrt{4}$,3.14,$\frac{3}{11}$,$\sqrt{3}$,$\frac{π}{5}$,0.66666,這6個數(shù)中,無理數(shù)共有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.王老師對本班40名學生的血型作了統(tǒng)計,列出如下的統(tǒng)計表,則本班A型血的人數(shù)是14人.
組 別A型B型AB型O型
頻 率x0.40.150.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.(1)如圖①,AB是⊙O的弦,點C是⊙O上的一點,在直線AB上方找一點D,使得∠ADB=∠ACB,畫出∠ADB,并說明理由;
(2)如圖②,AB是⊙O的弦,點C是⊙O上的一點,在過點C的直線l上找一點P,使得∠APB<∠ACB,畫出∠APB,并說明理由;
問題解決:
(3)如圖③,已知足球球門寬AB約為5$\sqrt{2}$米,一球員從距B點5$\sqrt{2}$米的C點(點A、B、C均在球場底線上),沿與AC成45°角的CD方向帶球.試問,該球員能否在射線CD上找到一點P,使得點P為最佳射門點(即∠APB最大)?若能找到,求出這時點P與點C的距離;若找不到,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,O為直線AB上一點,∠BOC=α.
(1)若α=40°,OD平分∠AOC,∠DOE=90°,如圖(a)所示,求∠AOE的度數(shù);
(2)若∠AOD=$\frac{1}{3}$∠AOC,∠DOE=60°,如圖(b)所示,請用α表示∠AOE的度數(shù);
(3)若∠AOD=$\frac{1}{n}$∠AOC,∠DOE=$\frac{180°}{n}$(n≥2,且n為正整數(shù)),如圖(c)所示,請用α和n表示∠AOE的度數(shù)(直接寫出結果).

查看答案和解析>>

同步練習冊答案