某農(nóng)戶計劃利用現(xiàn)有的一面墻(墻長8米),再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?
(1)2或4;(2),x的取值范圍是;(3)當(dāng)時,總?cè)莘eV最大=40.
【解析】
試題分析:(1)這個水槽是個長方體,我們先看這個矩形的面積,有了AD、EF、BC的長,因為材料的總長度是18m,因此這個矩形的長應(yīng)該是18﹣3x,又知道寬為x,又已知了長方體的高,因此可根據(jù)長×寬×高=36m3來得出關(guān)于x的二次方程從而求出x的值.
(2)和(1)類似,只需把36立方米換成V即可.
(3)此題是求二次函數(shù)的最值,可以用配方法或公式法,來求出此時x、y的值.
試題解析:(1)∵AD=EF=BC=x,∴AB=18﹣3x,∴水池的總?cè)莘e為,即,解得:x=2或4,所以x應(yīng)為2m或4m;
(2)由(1)知V與x的函數(shù)關(guān)系式為:,∵AB≤8,∴18-3x≤8,解得x≥,x的取值范圍是:;
(3),∴由函數(shù)圖象知:當(dāng)x=3時,V有最大值40.5.∵,∴若使水池的總?cè)莘e最大,,最大容積為40m3.
考點:1.二次函數(shù)的應(yīng)用;2.應(yīng)用題.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:《第26章 二次函數(shù)》2010年復(fù)習(xí)題(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》常考題集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年1月浙江省杭州市濱江區(qū)九年級(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com