如圖1是一個(gè)長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個(gè)正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個(gè)等式表示下列三個(gè)整式:(a+b)2,(a﹣b)2,ab之間的數(shù)量關(guān)系.
                                                  
                                                   圖1                                                圖2
解:(1)圖2中空白部分正方形的邊長為(a﹣b);
(2)由圖2可知:大正方形的邊長為(a+b),
所以,大正方形的面積為(a+b)2;
所以,空白部分的正方形面積=大正方形的面積﹣四個(gè)小長方形的面積,
即=(a+b)2﹣4ab=72﹣4×6=25;
(3)由圖2可以看出,大正方形面積=空白部分的正方形的面積+四個(gè)小長方形的面積,
即:(a+b)2=(a﹣b)2+4ab.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖1是一個(gè)長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個(gè)正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個(gè)等式表示下列三個(gè)整式:(a+b)2,(a-b)2,ab之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1是一個(gè)長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個(gè)正方形.
(1)圖2的陰影部分的正方形的邊長是
a-b
a-b

(2)用兩種不同的方法求圖中陰影部分的面積.
【方法1】S陰影=
(a-b)2
(a-b)2
;
【方法2】S陰影=
(a+b)2-4ab
(a+b)2-4ab
;
(3)觀察如圖2,寫出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系.
(4)根據(jù)(3)題中的等量關(guān)系,解決問題:
若x+y=10,xy=16,求x-y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1是一個(gè)長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個(gè)正方形.
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積.
(3)觀察圖2,用一個(gè)等式表示下列三個(gè)整式:(a+b)2,(a-b)2,ab之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江西省期末題 題型:解答題

如圖1是一個(gè)長為2a、寬為2b的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個(gè)正方形。
(1)圖2中的空白部分的正方形的邊長是多少?(用含a、b的式子表示)
(2)已知a+b=7,ab=6,求圖2中空白部分的正方形的面積;
(3)觀察圖2,用一個(gè)等式表示下列三個(gè)整式:(a+b)2,(a-b)2,ab之間的數(shù)量關(guān)系。

查看答案和解析>>

同步練習(xí)冊(cè)答案