【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)的圖象M沿x軸翻折,把所得到的圖象向右平移2個單位長度后再向上平移8個單位長度,得到二次函數(shù)圖象N.
(1)求N的函數(shù)表達式;
(2)設(shè)點P(m,n)是以點C(1,4)為圓心、1為半徑的圓上一動點,二次函數(shù)的圖象M與x軸相交于兩點A、B,求的最大值;
(3)若一個點的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點稱為整點.求M與N所圍成封閉圖形內(nèi)(包括邊界)整點的個數(shù).
【答案】(1);(2);(3)25.
【解析】
試題分析:(1)根據(jù)二次函數(shù)N的圖象是由二次函數(shù)M翻折、平移得到所以a=﹣1,求出二次函數(shù)N的頂點坐標(biāo)即可解決問題.
(2)由=可知OP最大時,最大,求出OP的最大值即可解決問題.
(3)畫出函數(shù)圖象即可解決問題.
試題解析:(1)解:二次函數(shù)的圖象M沿x軸翻折得到函數(shù)的解析式為,此時頂點坐標(biāo)(0,1),將此圖象向右平移2個單位長度后再向上平移8個單位長度得到二次函數(shù)圖象N的頂點為(2,9),故N的函數(shù)表達式,即.
(2)∵A(﹣1,0),B(1,0),∴=
==,∴當(dāng)PO最大時最大.如圖,延長OC與⊙O交于點P,此時OP最大,∴OP的最大值=OC+PO=,∴最大值==.
(3)M與N所圍成封閉圖形如圖所示:
由圖象可知,M與N所圍成封閉圖形內(nèi)(包括邊界)整點的個數(shù)為25個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
請解決下列問題:
(1)已知點M,N是線段AB的勾股分割點,且BN>MN>AM.若AM=2,MN=3,求BN的長;
(2)如圖2,若點F、M、N、G分別是AB、AD、AE、AC邊上的中點,點D,E是線段BC的勾股分割點,且EC>DE>BD,求證:點M,N是線段FG的勾股分割點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(﹣4,0).
(1)求該二次函數(shù)的表達式及點C的坐標(biāo);
(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 半圓是弧,弧也是半圓 B. 三點確定一個圓
C. 平分弦的直徑垂直于弦 D. 直徑是同一圓中最長的弦
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:
(1)甲、乙兩組單獨工作一天,商店應(yīng)各付多少元?
(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應(yīng)付費用較少?
(3)若裝修完后,商店每天可盈利200元,你認為如何安排施工有利用商店經(jīng)營?說說你的理由.(可以直接用(1)(2)中的已知條件)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com