【題目】根據(jù)題意計(jì)算與解答
(1)計(jì)算(x﹣y)2﹣(x﹣2y)(x+y)
(2)若關(guān)于x,y的二元一次方程組 的解滿足x+y>﹣ ,求出滿足條件的m的所有正整數(shù)值.
(3)若關(guān)于x的方程 + =3的解為正數(shù),求m的取值范圍.
【答案】
(1)解:原式=x2﹣2xy+y2﹣x2+xy+2y2=﹣xy+3y2
(2)解: ,
① +②得:x+y=﹣m+2,
代入不等式得:﹣m+2>﹣ ,
解得:m< ,
則正整數(shù)解為1,2
(3)解:去分母得:x+m﹣3m=3x﹣9,
解得:x= ,
由分式方程有正數(shù)解,得到 >0,且 ≠3,
解得:m< 且m≠
【解析】(1)原式利用完全平方公式,以及多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號合并即可得到結(jié)果;(2)方程組兩方程相加表示出x+y,代入已知不等式求出m的范圍,即可確定出正整數(shù)解;(3)分式方程去分母轉(zhuǎn)化為整式方程,由分式方程解為正數(shù),求出m的范圍即可.
【考點(diǎn)精析】掌握二元一次方程組的解和分式方程的解是解答本題的根本,需要知道二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解;分式方程無解(轉(zhuǎn)化成整式方程來解,產(chǎn)生了增根;轉(zhuǎn)化的整式方程無解);解的正負(fù)情況:先化為整式方程,求整式方程的解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣ x+cosα=0有兩個相等的實(shí)數(shù)根,則銳角a等于( )
A.0°
B.30°
C.45°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水果批發(fā)部門欲將A市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過程中的損耗均為200元/時。其它主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度(千米/時) | 運(yùn)費(fèi)(元/千米) | 裝卸費(fèi)用(元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
(1)如果汽車的總支出費(fèi)用比火車費(fèi)用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答.
(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運(yùn)往本市銷售。你將選擇哪種運(yùn)輸方式比較合算呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某計(jì)算裝置有一數(shù)據(jù)輸入口A和一運(yùn)算結(jié)果的輸出口B,表格中是小明輸入的一些數(shù)據(jù)和這些數(shù)據(jù)經(jīng)該裝置計(jì)算后輸出的相應(yīng)結(jié)果,按照這個計(jì)算裝置的計(jì)算規(guī)律,若輸入的數(shù)是10,則輸出的數(shù)是( )
A | 1 | 2 | 3 | 4 | 5 |
B | 0 | 3 | 8 | 15 | 24 |
A. 99 B. 100 C. 101 D. 102
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦晚會上,王老師要為她的學(xué)生及班級的六位科任老師送上賀年卡,網(wǎng)上購買賀年卡的優(yōu)惠條件是:購買50或50張以上享受團(tuán)購價(jià).王老師發(fā)現(xiàn):零售價(jià)與團(tuán)購價(jià)的比是5:4,王老師計(jì)算了一下,按計(jì)劃購買賀年卡只能享受零售價(jià),如果比原計(jì)劃多購買6張賀年卡就能享受團(tuán)購價(jià),這樣她正好花了100元,而且比原計(jì)劃還節(jié)約10元錢;
(1)賀年卡的零售價(jià)是多少?
(2)班里有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PA經(jīng)過點(diǎn)A(-1,0)、點(diǎn)P(1,2),直線PB是一次函數(shù)y=-x+3的圖象.
(1)求直線PA的表達(dá)式及Q點(diǎn)的坐標(biāo);
(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)E、F分別在直線AB,CD上,點(diǎn)P在AB、CD之間,連結(jié)EP、FP,如圖1,過FP上的點(diǎn)G作GH∥EP,交CD于點(diǎn)H,且∠1=∠2.
(1)求證:AB∥CD;
(2)如圖2,將射線FC沿FP折疊,交PE于點(diǎn)J,若JK平分∠EJF,且JK∥AB,則∠BEP與∠EPF之間有何數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,將射線FC沿FP折疊,將射線EA沿EP折疊,折疊后的兩射線交于點(diǎn)M,當(dāng)EM⊥FM時,求∠EPF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】①在數(shù)軸上沒有點(diǎn)能表示+1;②無理數(shù)是開不盡方的數(shù);③存在最小的實(shí)數(shù);④4的平方根是±2,用式子表示是=±2;⑤某數(shù)的絕對值,相反數(shù),算術(shù)平方根都是它本身,則這個數(shù)是0,其中正確的是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com