【題目】計算:( )﹣1﹣20140﹣2sin30°+ .
【答案】解:原式=2﹣1﹣2× +2 =2﹣1﹣1+2 =2
【解析】原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值計算,最后一項化為最簡二次根式,計算即可得到結果.
【考點精析】掌握零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質是解答本題的根本,需要知道零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y= 和y= 的一支上,分別過點A、C作x軸的垂線,垂足分別為M和N,則有以下的結論:
① = ;
②陰影部分面積是 (k1+k2);
③當∠AOC=90°時,|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關于x軸對稱,也關于y軸對稱.
其中正確的結論是(把所有正確的結論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角△ABC中,∠C=90°,∠A、∠B與∠C的對邊分別是a、b和c,那么下列關系中,正確的是( )
A.cosA=
B.tanA=
C.sinA=
D.cosA=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,點E在BC邊上,AE與BD交于點F,∠BAE=∠DBC.
(1)求證:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
(1)命題:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:“等角對等邊”).
已知:如圖, .
求證: .
(2)證明命題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】立定跳遠是小剛同學體育中考的選考項目之一.某次體育課上,體育老師記錄了小剛的一組立定跳遠訓練成績?nèi)缦卤恚?
成績(m) | 2.35 | 2.4 | 2.45 | 2.5 | 2.55 |
次數(shù) | 1 | 1 | 2 | 5 | 1 |
則下列關于這組數(shù)據(jù)的說法中正確的是( )
A.眾數(shù)是2.45
B.平均數(shù)是2.45
C.中位數(shù)是2.5
D.方差是0.48
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點A、B,以線段AB為邊在第一象限作等邊△ABC.
(1)若點C在反比例函數(shù)y= 的圖象上,求該反比例函數(shù)的解析式;
(2)點P(2 ,m)在第一象限,過點P作x軸的垂線,垂足為D,當△PAD與△OAB相似時,P點是否在(1)中反比例函數(shù)圖象上?如果在,求出P點坐標;如果不在,請加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com