【題目】如圖①,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以OA為邊在第一象限內(nèi)作正方形OABC,點(diǎn)D是x軸正半軸上一動(dòng)點(diǎn)(OD>1),連接BD,以BD為邊在第一象限內(nèi)作正方形DBFE,設(shè)M為正方形DBFE的中心,直線MA交y軸于點(diǎn)N.如果定義:只有一組對(duì)角是直角的四邊形叫做損矩形.
(1)試找出圖1中的一個(gè)損矩形;
(2)試說明(1)中找出的損矩形的四個(gè)頂點(diǎn)一定在同一個(gè)圓上;
(3)隨著點(diǎn)D位置的變化,點(diǎn)N的位置是否會(huì)發(fā)生變化?若沒有發(fā)生變化,求出點(diǎn)N的坐標(biāo);若發(fā)生變化,請(qǐng)說明理由;
(4)在圖②中,過點(diǎn)M作MG⊥y軸于點(diǎn)G,連接DN,若四邊形DMGN為損矩形,求D點(diǎn)坐標(biāo).
【答案】(1)詳見解析;(2)詳見解析;(3)N點(diǎn)的坐標(biāo)為(0,﹣1);(4)D點(diǎn)坐標(biāo)為(3,0).
【解析】
試題(1)根據(jù)題中給出的損矩形的定義,從圖找出只有一組對(duì)角是直角的四邊形即可;
(2)證明四邊形BADM四個(gè)頂點(diǎn)到BD的中點(diǎn)距離相等即可;
(3)利用同弧所對(duì)的圓周角相等可得∠MAD=∠MBD,進(jìn)而得到OA=ON,即可求得點(diǎn)N的坐標(biāo);
(4)根據(jù)正方形的性質(zhì)及損矩形含有的直角,利用勾股定理求解.
(1)四邊形ABMD為損矩形;
(2)取BD中點(diǎn)H,連結(jié)MH,AH
∵四邊形OABC,BDEF是正方形
∴△ABD,△BDM都是直角三角形
∴HA=BD HM=BD
∴HA=HB=HM=HD=BD
∴損矩形ABMD一定有外接圓
(3)∵損矩形ABMD一定有外接圓⊙H
∴MAD =MBD
∵四邊形BDEF是正方形
∴MBD=45°
∴MAD=45°
∴OAN=45°
∵OA=1
∴ON=1
∴N點(diǎn)的坐標(biāo)為(0,-1)
(4) 延長AB交MG于點(diǎn)P,過點(diǎn)M作MQ⊥軸于點(diǎn)Q
設(shè)MG=,則四邊形APMQ為正方形
∴PM=AQ=-1 ∴OG=MQ=-1
∵△MBP≌△MDQ
∴DQ=BP=CG=-2
∴MN2
ND2
MD2
∵四邊形DMGN為損矩形
∴
∴
∴=2.5或=1(舍去)
∴OD=3
∴D點(diǎn)坐標(biāo)為(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為1的正三角形OAP沿χ軸方向連續(xù)翻轉(zhuǎn)若干次,點(diǎn)P依次落在點(diǎn)P1,P2,P3,…,P2018的位置,則點(diǎn)P2018的橫坐標(biāo)為( 。
A.2016B.2017C.2018D.2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王某承包了甲、乙兩片荒山,各栽了100棵楊梅樹,現(xiàn)已全部掛果,為了分析收成情況,他分別從兩山上各采摘了4棵樹上的全部楊梅,每棵樹的產(chǎn)量如折線統(tǒng)計(jì)圖.
(1)分別計(jì)算甲、乙兩山樣本的平均數(shù),并估計(jì)出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計(jì)算說明,哪個(gè)山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,過A,B,D三點(diǎn)的⊙O分別交BC,CD于點(diǎn)E,M,下列結(jié)論:
①DM=CM;②弧AB=弧EM;③⊙O的直徑為2;④AE=AD.
其中正確的結(jié)論有______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是四個(gè)全等的小矩形組成的圖形,這些矩形的頂點(diǎn)稱為格點(diǎn).△ABC是格點(diǎn)三角形(頂點(diǎn)是格點(diǎn)的三角形)
(1)若每個(gè)小矩形的較短邊長為1,則BC= ;
(2)①在圖1、圖2中分別畫一個(gè)格點(diǎn)三角形(頂點(diǎn)是格點(diǎn)的三角形),使它們都與△ABC相似(但不全等),且圖1,2中所畫三角形也不全等).
②在圖3中只用直尺(沒有刻度)畫出△ABC的重心M.(保留痕跡,點(diǎn)M用黑點(diǎn)表示,并注上字母M)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在的邊上,以為圓心,為半徑的圓與交于點(diǎn),與交于點(diǎn),并且與邊相切于點(diǎn),連接.已知平分.
(1)求證:;
(2)若,的半徑為3.求陰影部分的面積.(結(jié)果保留和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在中,,,, 動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒3個(gè)單位的速度運(yùn)動(dòng)至點(diǎn),過點(diǎn)作交射線于點(diǎn).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
(1)線段長為 .(用含的代數(shù)式表示)
(2)若與的面積比為1:4時(shí), 求的值.
(3)設(shè)與重疊部分圖形的周長為, 求與之間的函數(shù)關(guān)系式.
(4)當(dāng)直線把分成的兩部分圖形中有一個(gè)是軸對(duì)稱圖形時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)量角器與一塊30°(∠CAB=30°)角的三角板拼在一起,三角板的斜邊AB與量角器所在圓的直徑MN重合,現(xiàn)有射線CP繞點(diǎn)C從CA開始沿順時(shí)針方向以每秒2°的速度旋轉(zhuǎn)到與CB重合,就停止旋轉(zhuǎn).在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E.連接BE.
(1)設(shè)旋轉(zhuǎn)x秒后,點(diǎn)E處的讀數(shù)為y°,則y與x的函數(shù)關(guān)系式________.
(2)當(dāng)CP旋轉(zhuǎn)________秒時(shí),△BCE是等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com