【題目】如圖,AB是半圓O的直徑,AC=4,CAB=60°,D是弧BC上的一個動點,CGAD,連結(jié)BG,在點D移動的過程中,BG的最小值是___________.

【答案】-2

【解析】

AC為直徑作圓O',連接BO'BC,在點D移動的過程中,點G在以AC為直徑的圓上運動,當O'G、B三點共線時BG的值最小,利用勾股定理求出BO',由BG= BO'-G O'可得結(jié)果.

AC為直徑作圓O',連接BO',BC,如下圖所示,

CG⊥AD,

∴∠AGC=90°,

∴在點D移動的過程中,點G在以AC為直徑的圓上運動,

AB是圓O的直徑,

∴∠ACB=90°,

RtABC中,AC=4,∠CAB=60°

,

RtBCO'中,CO'=G O'=AC=2,

BG+GO'BO'

∴當O'、G、B三點共線時BG的值最小,

最小值BG= BO'-G O'=.

故答案為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖C是線段BD上一點,分別以BC、CD為邊在BD同側(cè)作等邊ABC和等邊CDE,ADCEF,BEACG,則圖中可通過旋轉(zhuǎn)而相互得到的三角形對數(shù)有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場在“五一”促銷活動中規(guī)定,顧客每消費100元就能獲得一次中獎機會.為了活躍氣氛.設(shè)計了兩個抽獎方案:

方案一:轉(zhuǎn)動轉(zhuǎn)盤一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎品;

方案二:轉(zhuǎn)動轉(zhuǎn)盤兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎品.(兩個轉(zhuǎn)盤都被平均分成3份)

1)若轉(zhuǎn)動一次轉(zhuǎn)盤,求領(lǐng)取一份獎品的概率;

2)如果你獲得一次抽獎機會,你會選擇哪個方案?請采用列表法或樹狀圖說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有長為24m的籬笆,圍成中間隔有一道籬笆的長方形的花圃,且花圃的長可借用一段墻體(墻體的最大可用長度a10m)

(1)如果所圍成的花圃的面積為45m2,試求寬AB的長;

(2)按題目的設(shè)計要求,能圍成面積比45m2更大的花圃嗎?如果能,請求出最大面積,并說明圍法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點ABD的距離分別為1,2,.△ADP沿點A旋轉(zhuǎn)至ABP,連接PP,并延長APBC相交于點Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國慶期間某旅游點一家商鋪銷售一批成本為每件50元的商品,規(guī)定銷售單價不低于成本價,又不高于每件70,銷售量y()與銷售單價x()的關(guān)系可以近似的看作一次函數(shù)(如圖).

(1)請直接寫出y關(guān)于x之間的關(guān)系式 ;

(2)設(shè)該商鋪銷售這批商品獲得的總利潤(總利潤=總銷售額一總成本)P元,求Px之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:x取何值時,P的值最大?最大值是多少?

(3)若該商鋪要保證銷售這批商品的利潤不能低于400,求銷售單價x()的取值范圍是 .(可借助二次函數(shù)的圖象直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,滑雪者在滑坡上滑行的距離y1(單位:m)和滑行時間t1(單位s)滿足二次函數(shù)關(guān)系,并測得相關(guān)數(shù)據(jù):

滑行時間t1/s

0

1

2

3

4

滑行距離y1/s

0

4.5

14

28.5

48

滑雪者在緩沖帶上滑行的距離y2(單位:m)和滑行時間t2(單位:s)滿足:y2=52t2﹣2t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s.

(1)求y1和t1滿足的二次函數(shù)解析式;

(2)求滑坡AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,拋物線y=ax2+2x+cx軸交于點A(﹣10)和點B,與y軸相交于點C03),拋物線的對稱軸為直線

1)求這條拋物線的關(guān)系式,并寫出其對稱軸和頂點M的坐標;

2)如果直線y=kx+b經(jīng)過C、M兩點,且與x軸交于點D,點C關(guān)于直線的對稱點為N,試證明四邊形CDAN是平行四邊形;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓的直徑,C、D是半圓上的兩點,且∠BAC16°, .求四邊形ABCD各內(nèi)角的度數(shù).

查看答案和解析>>

同步練習冊答案