【題目】一輛汽車在公路上行駛,其所走的路程和所用的時間可用下表表示:
時間t(min) | 1 | 2.5 | 5 | 10 | 20 | 50 | … |
路程s(km) | 2 | 5 | 10 | 20 | 40 | 100 | … |
(1)在這個變化過程中,自變量、因變量各是什么?
(2)當(dāng)汽車行駛的路程為20 km時,所花的時間是多少分鐘?
(3)隨著t逐漸變大,s的變化趨勢是什么?
(4)路程s與時間t之間的函數(shù)表達(dá)式為______________.
(5)按照這一行駛規(guī)律,當(dāng)所花的時間t是300 min時,汽車行駛的路程s是多少千米?
【答案】(1)自變量是時間,因變量是路程;(2)10 min;(3)隨著t逐漸變大,s逐漸變大;(4)s=2t(t≥0);(5)汽車行駛的路程是600 km.
【解析】
(1)根據(jù)函數(shù)的定義可得出自變量為時間t,因變量為路程s;
(2)根據(jù)表格可知,每分鐘行2千米,由公式t=,再得出行駛路程s為20km時,所花的時間t即可;
(3)從表中得出隨著t逐漸變大,s逐漸變大;
(4)路程、速度、時間之間的關(guān)系式為s=vt,再把v=2代入即可;
(5)把t=300代入s=2t即可得出答案.
(1)自變量是時間,因變量是路程.
(2)當(dāng)汽車行駛的路程為20 km時,所花的時間是10 min.
(3)由表得,隨著t逐漸變大,s逐漸變大.
(4)s=2t(t≥0)
(5)把t=300代入s=2t,得s=600.
即汽車行駛的路程是600 km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達(dá)式;
(2)點P是拋物線上一動點,且位于第四象限,當(dāng)△ABP的面積為6時,求出點P的坐標(biāo);
(3)若點M在直線BH上運(yùn)動,點N在x軸上運(yùn)動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),則位似中心的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家到圖書館看報然后返回,他離家的距離y與離家的時間x之間的對應(yīng)關(guān)系如圖所示,如果小明在圖書館看報30分鐘,那么他離家50分鐘時離家的距離為 km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,且AB=5,AC=6,過點D作AC的平行線交BC的延長線于點E,則△BDE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ADB和△ADC中,下列條件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下面兩個定理:
①線段垂直平分線上的點到這條線段兩個端點的距離相等;
②到一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
應(yīng)用上述定理進(jìn)行如下推理:
如圖,直線l是線段MN的垂直平分線.
∵點A在直線l上,∴AM=AN.( )
∵BM=BN,∴點B在直線l上.( )
∵CM≠CN,∴點C不在直線l上.
這是∵如果點C在直線l上,那么CM=CN, ( )
這與條件CM≠CN矛盾.
以上推理中各括號內(nèi)應(yīng)注明的理由依次是 ( )
A. ②①① B. ②①②
C. ①②② D. ①②①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對外銷售,某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套樓房面積均為120米2.
若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價8%,另外每套樓房贈送a元裝修基金;
方案二:降價10%,沒有其他贈送.
(1)請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com