【題目】小王周末騎電動(dòng)車從家里出發(fā)去商場(chǎng)買東西,當(dāng)他騎了一段路時(shí),想起要買一本書(shū),于是原路返回到剛經(jīng)過(guò)的新華書(shū)店,買到書(shū)后繼續(xù)前往商場(chǎng),如圖是他離家的距離(米)與時(shí)間(分鐘)之間的關(guān)系示意圖,請(qǐng)根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)在此變化過(guò)程中,自變量是 ,因變量是 .
(2)小王在新華書(shū)店停留了多長(zhǎng)時(shí)間?
(3)買到書(shū)后,小王從新華書(shū)店到商場(chǎng)的騎車速度是多少?
【答案】(1)時(shí)間;距離;(2)10分鐘;(3)450米/分
【解析】
(1)根據(jù)圖象作答即可;
(2)由函數(shù)圖象可知,20~30分鐘的路程沒(méi)變,所以小王在新華書(shū)店停留了10分鐘;
(3)小王從新華書(shū)店到商場(chǎng)的路程為6250-4000=2250米,所用時(shí)間為35-30=5分鐘,根據(jù)速度=路程÷時(shí)間,即可解答.
(1)時(shí)間;距離;(2)10分鐘;(3)450米/分
解:(1)在此變化過(guò)程中,自變量是時(shí)間,因變量是距離.
故答案為:時(shí)間;距離;
(2)30-20=10(分鐘).
所以小王在新華書(shū)店停留了10分鐘;
(3)小王從新華書(shū)店到商場(chǎng)的路程為6250-4000=2250米,所用時(shí)間為35-30=5分鐘,
小王從新華書(shū)店到商場(chǎng)的騎車速度是:2250÷5=450(米/分).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1.
(2)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2.
(3)請(qǐng)直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c經(jīng)過(guò)A,C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B,其對(duì)稱軸是.
(1)求拋物線解析式.
(2)拋物線上是否存在點(diǎn)M(點(diǎn)m不與點(diǎn)C重合),使△MAB與△ABC的面積相等?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是BC邊的中點(diǎn),將△ABE沿AE所在的直線折疊得到△AFE,延長(zhǎng)AF交CD于點(diǎn)G,已知CG=2,DG=1,則BC的長(zhǎng)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師給學(xué)生出了一道題:
求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a=,b=﹣1,同學(xué)們看了題目后發(fā)表不同的看法.小張說(shuō):條件b=﹣1是多余的.”小李說(shuō):“不給這個(gè)條件,就不能求出結(jié)果,所以不多余.”
(1)你認(rèn)為他們誰(shuí)說(shuō)的有道理?為什么?
(2)若xm等于本題計(jì)算的結(jié)果,試求x2m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線y=x+2交于C、D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為(3,).點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè)、C、P、F為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說(shuō)明理由.
(3)若存在點(diǎn)P,使∠PCF=45°,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足﹣(a﹣4)2≥0,c=+8.
(1)求直線y=bx+c的解析式并直接寫出正方形OABC的對(duì)角線的交點(diǎn)D的坐標(biāo);
(2)直線y=bx+c沿x軸正方向以每秒移動(dòng)1個(gè)單位長(zhǎng)度的速度平移,設(shè)平移的時(shí)間為t秒,問(wèn)是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P為正方形OABC的對(duì)角線AC上的動(dòng)點(diǎn)(端點(diǎn)A、C除外),PM⊥PO,交直線AB于M,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)O運(yùn)動(dòng),過(guò)點(diǎn)P作,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒.
①若△NPH的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),問(wèn)是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com