已知數(shù)據(jù)7,9,19,a,17,15的中位數(shù)為13,則這組數(shù)的平均數(shù)為
 
,方差為
 
(保留小數(shù)點(diǎn)后2位有效數(shù)字).
分析:根據(jù)中位數(shù)的定義先求出a,再根據(jù)平均數(shù)的定義,方差公式得出結(jié)論.
解答:解:因?yàn)橹形粩?shù)是13,
根據(jù)中位數(shù)的定義可得
1
2
(a+15)=13,即a=11,
所以平均數(shù)為
1
6
(7+9+19+11+17+15)=13
方差為S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]
=
1
6
[(7-13)2+(9-13)2+…+(15-13)2]
=18.67
故填13,18.67.
點(diǎn)評(píng):本題考查統(tǒng)計(jì)知識(shí)中的中位數(shù)、平均數(shù)和方差的定義.將一組數(shù)據(jù)從小到大依次排列,把中間數(shù)據(jù)(或中間兩數(shù)據(jù)的平均數(shù))叫做中位數(shù).平均數(shù)只要求出數(shù)據(jù)之和再除以總個(gè)數(shù)即可.
方差公式為:S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)據(jù)7,9,19,a,17,15的中位數(shù)為13,則這組數(shù)的平均數(shù)為_(kāi)_____,方差為_(kāi)_____(保留小數(shù)點(diǎn)后2位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第4章《視圖與投影》易錯(cuò)題集(85):4.1 視圖(解析版) 題型:填空題

已知數(shù)據(jù)7,9,19,a,17,15的中位數(shù)為13,則這組數(shù)的平均數(shù)為    ,方差為    (保留小數(shù)點(diǎn)后2位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第3章《證明(三)》易錯(cuò)題集(34):3.1 平行四邊形(解析版) 題型:填空題

已知數(shù)據(jù)7,9,19,a,17,15的中位數(shù)為13,則這組數(shù)的平均數(shù)為    ,方差為    (保留小數(shù)點(diǎn)后2位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《數(shù)據(jù)的離散程度》好題集(02):2.2 方差與標(biāo)準(zhǔn)差(解析版) 題型:填空題

已知數(shù)據(jù)7,9,19,a,17,15的中位數(shù)為13,則這組數(shù)的平均數(shù)為    ,方差為    (保留小數(shù)點(diǎn)后2位有效數(shù)字).

查看答案和解析>>

同步練習(xí)冊(cè)答案