【題目】計算:|3|+(﹣40=________

【答案】4

【解析】

先計算絕對值,再計算零次冪,根據(jù)任何非零數(shù)的零次冪等于1.

解:原式=3+1=4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點ECD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點GAF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④SABG= SFGH.其中正確的是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是 , 并補全頻數(shù)分布直方圖
(2)C組學生的頻率為 , 在扇形統(tǒng)計圖中D組的圓心角是度;
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(8,8),將正方形ABCO繞點C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);判斷線段HG、OH、BG的數(shù)量關(guān)系,并說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次體育達標測試中,九年級(3)班的15名男同學的引體向上成績?nèi)缦卤硭荆?/span>

成績(個)

8

9

11

12

13

15

人數(shù)

1

2

3

4

3

2

這15名男同學引體向上成績的中位數(shù)和眾數(shù)分別是( )
A.12,13
B.12,12
C.11,12
D.3,4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中, AB、BC、AC三邊的長分別為 、 、 ,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.

(1)△ABC的面積為:
(2)若△DEF三邊的長分別為 、 、 ,請在圖2的正方形網(wǎng)格中畫出相應的△DEF,并利用構(gòu)圖法求出它的面積.

(3)如圖3,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13、10、17,請利用第2小題解題方法求六邊形花壇ABCDEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果零上2℃記作+2℃,那么零下3℃記作【 】

  A.-3℃  B.-2℃  C.+3℃  D.+2℃

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“We like maths.”這個句子的所有字母中,字母“e”出現(xiàn)的頻數(shù)是( 。
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步推廣陽光體育大課間活動,某中學對已開設(shè)的A實心球,B立定跳遠,C跑步,D跳繩四種活動項目的學生喜歡情況進行調(diào)查,隨機抽取了部分學生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:

1)請計算本次調(diào)查中喜歡跑步的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;

2)隨機抽取了5名喜歡跑步的學生,其中有3名女生,2名男生,現(xiàn)從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.

查看答案和解析>>

同步練習冊答案