【題目】已知:為的直徑,為延長(zhǎng)線上的任意一點(diǎn),過點(diǎn)作的切線,切點(diǎn)為,的平分線與交于點(diǎn).
(1)如圖,若恰好等于,求的度數(shù);
(2)如圖,若點(diǎn)位于中不同的位置,的結(jié)論是否仍然成立?說明你的理由.
【答案】(1);(2)的大小不發(fā)生變化.理由見解析.
【解析】
(1)連接OC,則∠OCP=90°,根據(jù)∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.
(2)由PC是⊙O的切線,得∠OCP=90°.再根據(jù)PD是∠CPA的平分線,得∠APC=2∠APD.根據(jù)OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,則∠COP+∠OPC=90°,從而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不發(fā)生變化.
連接,
∵是的切線,
∴
∴.
∵,
∴
∵,
∴
∵平分,
∴,
∴.
(2)的大小不發(fā)生變化.
∵是的切線,
∴.
∵是的平分線,
∴.
∵,
∴,
∴,
在中,,
∴,
∴,
∴.
即的大小不發(fā)生變化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架外國(guó)偵察機(jī)沿方向侵入我國(guó)領(lǐng)空進(jìn)行非法偵察,我空軍的戰(zhàn)斗機(jī)沿方向與外國(guó)偵察機(jī)平行飛行,進(jìn)行跟蹤監(jiān)視,我機(jī)在處與外國(guó)偵察機(jī)處的距離為米,為,這時(shí)外國(guó)偵察機(jī)突然轉(zhuǎn)向,以偏左的方向飛行,我機(jī)繼續(xù)沿方向以米/秒的速度飛行,外國(guó)偵察機(jī)在點(diǎn)故意撞擊我戰(zhàn)斗機(jī),使我戰(zhàn)斗機(jī)受損.問外國(guó)偵察機(jī)由到的速度是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù),)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED,點(diǎn)B、C、E在同一直線上,則結(jié)論:①AC=CD,②AC⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有( )
A. 僅① B. 僅①③ C. 僅①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=60°,點(diǎn)D是BC邊的中點(diǎn),DE⊥BC,∠ABC的平分線BF交DE于△ABC內(nèi)一點(diǎn)P,連接PC.
(1)若∠ABP=32°,求∠ACP的度數(shù);
(2)若∠ACP=m°,∠ABP=n°,請(qǐng)直接寫出m,n滿足的關(guān)系式:________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,點(diǎn)O是AB的中點(diǎn),邊AC的長(zhǎng)為6,將一塊邊長(zhǎng)足夠長(zhǎng)的三角板的直角頂點(diǎn)放在O點(diǎn)處,將三角板繞著點(diǎn)O旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點(diǎn)為點(diǎn)D,另一條直角邊與BC相交,交點(diǎn)為點(diǎn)E,則等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長(zhǎng)度之和為( )
A. 7 B. 6 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線都經(jīng)過坐標(biāo)軸的正半軸上A(4,0),B兩點(diǎn),該拋物線的對(duì)稱軸x=﹣1,與x軸交于點(diǎn)C,且∠ABC=90°,求:
(1)直線AB的解析式;
(2)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)在線段上運(yùn)動(dòng)(不與、重合),連接,作,交線段于.
(1)當(dāng)時(shí),______________;點(diǎn)從向運(yùn)動(dòng)時(shí),逐漸變____________(填“大”或“小”);
(2)當(dāng)時(shí),求證:,請(qǐng)說明理由;
(3)在點(diǎn)的運(yùn)動(dòng)過程中,的形狀也在改變,判斷當(dāng)等于多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)
與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com