(2005•寧德)如圖,在一個橫截面為Rt△ABC的物體中,∠CAB=30°,BC=1米.工人師傅把此物體搬到墻邊,先將AB邊放在地面(直線l)上,再按順時針方向繞點B翻轉(zhuǎn)到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距離為線段AC的長度(此時A2C2恰好靠在墻邊).
(1)請直接寫出AB、AC的長;
(2)畫出在搬動此物的整個過程A點所經(jīng)過的路徑,并求出該路徑的長度(精確到0.1米).

【答案】分析:(1)根據(jù)直角三角形的三邊關(guān)系,30°的角所對的直角邊是斜邊的一半,可以直接確定AB、AC.
(2)根據(jù)要求畫出路徑,再用弧長公式求解路徑的長度.
解答:解:(1)∵∠CAB=30°,BC=1米
∴AB=2米,AC=米(4分).

(2)畫出A點經(jīng)過的路徑:(5分)
∵∠ABA1=180°-60°=120°,A1A2=AC=
∴A點所經(jīng)過的路徑長=+(7分)
=π+≈5.9(米)(8分).
點評:本題是動點問題,關(guān)鍵是要確定動點規(guī)律或特性,然后解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•寧德)如圖,直線y=kx+8分別與x軸、y軸相交于A、B兩點,O為坐標(biāo)原點,A點的坐標(biāo)為(4,0).
(1)求k的值;
(2)若P為y軸(B點除外)上的一點,過P作PC⊥y軸交直線AB于C.設(shè)線段PC的長為l,點P的坐標(biāo)為(0,m).
①如果點P在線段BO(B點除外)上移動,求l與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
②如果點P在射線BO(B、O兩點除外)上移動,連接PA,則△APC的面積S也隨之發(fā)生變化.請你在面積S的整個變化過程中,求當(dāng)m為何值時,S=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省泉州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•寧德)如圖,直線y=kx+8分別與x軸、y軸相交于A、B兩點,O為坐標(biāo)原點,A點的坐標(biāo)為(4,0).
(1)求k的值;
(2)若P為y軸(B點除外)上的一點,過P作PC⊥y軸交直線AB于C.設(shè)線段PC的長為l,點P的坐標(biāo)為(0,m).
①如果點P在線段BO(B點除外)上移動,求l與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
②如果點P在射線BO(B、O兩點除外)上移動,連接PA,則△APC的面積S也隨之發(fā)生變化.請你在面積S的整個變化過程中,求當(dāng)m為何值時,S=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省泉州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧德)如圖,直線y=kx+8分別與x軸、y軸相交于A、B兩點,O為坐標(biāo)原點,A點的坐標(biāo)為(4,0).
(1)求k的值;
(2)若P為y軸(B點除外)上的一點,過P作PC⊥y軸交直線AB于C.設(shè)線段PC的長為l,點P的坐標(biāo)為(0,m).
①如果點P在線段BO(B點除外)上移動,求l與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
②如果點P在射線BO(B、O兩點除外)上移動,連接PA,則△APC的面積S也隨之發(fā)生變化.請你在面積S的整個變化過程中,求當(dāng)m為何值時,S=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省泉州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧德)如圖,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省泉州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•寧德)如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個矩形停車場DCFE,使得D點在BC邊上,E、F分別是AB、AC邊的中點.
(1)求另一條直角邊BC的長度;
(2)求停車場DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請你在原圖中畫出花壇的草圖,求出它的半徑(不要求說明面積最大的理由),并求此時直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

同步練習(xí)冊答案