(本題滿分12分)
如圖所示,在平面直角坐標系中,頂點為(,)的拋物線交軸于點,交軸于,兩點(點在點的左側), 已知點坐標為(,).
(1)求此拋物線的解析式;
(2)過點作線段的垂線交拋物線于點,
如果以點為圓心的圓與直線相切,請判斷拋物
線的對稱軸與⊙有怎樣的位置關系,并給出證明;
(3)已知點是拋物線上的一個動點,且位于,
兩點之間,問:當點運動到什么位置時,的
面積最大?并求出此時點的坐標和的最大面積.
解:(1)設拋物線為.……………1分
∵拋物線經過點(0,3),∴.∴.……………2分
∴拋物線為. ……………………………3分
(2) 答:與⊙相交 …………………………………………………………………4分
證明:當時,,.
∴為(2,0),為(6,0).∴.…………………5分
設⊙與相切于點,連接,則.
∵,∴.
又∵,∴.∴∽.……6分
∴.∴.∴.…………………………7分
∵拋物線的對稱軸為,∴點到的距離為2.
∴拋物線的對稱軸與⊙相交. ……………………………………………8分
(3) 解:如圖,過點作平行于軸的直線交于點。
可求出的解析式為.…………………………………………9分
設點的坐標為(,),則點的坐標為(,).
∴.……………10分
∵,
∴當時,的面積最大為. ……………11分
此時,點的坐標為(3,). ………12分
【解析】函數與圓相結合,有一定的難度。
科目:初中數學 來源: 題型:
5 | 2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省鹽城市九年級上學期學情調查數學卷 題型:解答題
(本題滿分12分)某商場購進一批單價為16元日用品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格,經試驗發(fā)現,若按每件20元的價格銷售時,每月能賣360件,若按每件25元的價格銷售時,每月能賣210件,假定每月銷售件數Y(件)是價格X(元/件)的一次函數
1.(1)試求Y 與X之間的關系式。
2.(2)在商品積壓,且不考慮其它因素的條件下,問銷售價格定為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本)
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省海安縣五校聯(lián)考九年級上學期期中考試數學卷 題型:解答題
(本題滿分12分)如圖,⊙O的半徑為1,點P是⊙O上一點,弦AB垂直平分線段OP,點D是弧APB上任一點(與端點A、B不重合),DE⊥AB于點E,以點D為圓心、DE長為半徑作⊙D,分別過點A、B作⊙D的切線,兩條切線相交于點C.
1.(1)求弦AB的長;
2.(2)判斷∠ACB是否為定值,若是,求出∠ACB的大小;否則,請說明理由;
3.(3)記△ABC的面積為S,若=4,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源:2011-2012年江蘇省揚州市八年級第一學期期末考試數學卷 題型:解答題
(本題滿分12分)如圖①,一條筆直的公路上有A、B、C 三地,B、C 兩地相距 150 千米,甲、乙兩輛汽車分別從B、C 兩地同時出發(fā),沿公路勻速相向而行,分別駛往C、B 兩地.甲、乙兩車到A 地的距離、(千米)與行駛時間 x(時)的關系如圖②所示.
根據圖象進行以下探究:
1.(1)請在圖①中標出 A地的位置,并作簡要說明;
2.(2) 甲的速度為 ,乙的速度為 .
3.(3)求圖②中M點的坐標,并解釋該點的實際意義;
4.(4)在圖②中補全甲車到達C地的函數圖象,求甲車到 A地的距離與行駛時間x的函數關系式;
5.(5)出發(fā)多長時間,甲、乙兩車距A點的距離相等?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com