如圖,已知半圓O的直徑DE=12cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圓O以2cm/s的速度從左向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)D、E始終在直線(xiàn)BC上.設(shè)運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t=0s時(shí),半圓O在△ABC的左側(cè),OC=8cm.
(1)當(dāng)t為何值時(shí),△ABC的一邊所在直線(xiàn)與半圓O所在的圓相切?
(2)當(dāng)△ABC的一邊所在直線(xiàn)與半圓O所在的圓相切時(shí),如果半圓O與直線(xiàn)DE圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.
【答案】分析:(1)隨著半圓的運(yùn)動(dòng)分四種情況:①當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),AC與半圓相切,②當(dāng)點(diǎn)O運(yùn)動(dòng)到點(diǎn)C時(shí),AB與半圓相切,③當(dāng)點(diǎn)O運(yùn)動(dòng)到BC的中點(diǎn)時(shí),AC再次與半圓相切,④當(dāng)點(diǎn)O運(yùn)動(dòng)到B點(diǎn)的右側(cè)時(shí),AB的延長(zhǎng)線(xiàn)與半圓所在的圓相切.分別求得半圓的圓心移動(dòng)的距離后,再求得運(yùn)動(dòng)的時(shí)間.
(2)在1中的②,③中半圓與三角形有重合部分.在②圖中重疊部分是圓心角為90°,半徑為6cm的扇形,故可根據(jù)扇形的面積公式求解.在③圖中,所求重疊部分面積為=S△POB+S扇形DOP
解答:解:(1)①如圖,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),AC⊥OE,OC=OE=6cm,所以AC與半圓O所在的圓相切,此時(shí)點(diǎn)O運(yùn)動(dòng)了2cm,所求運(yùn)動(dòng)時(shí)間為:t==1(s)
②如圖,當(dāng)點(diǎn)O運(yùn)動(dòng)到點(diǎn)C時(shí),過(guò)點(diǎn)O作OF⊥AB,垂足為F.
在Rt△FOB中,∠FBO=30°,OB=12cm,則OF=6cm,即OF等于半圓O的半徑,所以AB與半圓O所在的圓相切.此時(shí)點(diǎn)O運(yùn)動(dòng)了8cm,所求運(yùn)動(dòng)時(shí)間為:t==4(s)
③如圖,當(dāng)點(diǎn)O運(yùn)動(dòng)到BC的中點(diǎn)時(shí),AC⊥OD,OC=OD=6cm,所以AC與半圓O所在的圓相切.此時(shí)點(diǎn)O運(yùn)動(dòng)了14cm,所求運(yùn)動(dòng)時(shí)間為:t==7(s).
④如圖,當(dāng)點(diǎn)O運(yùn)動(dòng)到B點(diǎn)的右側(cè),且OB=12cm時(shí),過(guò)點(diǎn)O作OQ⊥AB,垂足為Q.在Rt△QOB中,∠OBQ=30°,則OQ=6cm,即OQ等于半圓O所在的圓的半徑,
所以直線(xiàn)AB與半圓O所在的圓相切.此時(shí)點(diǎn)O運(yùn)動(dòng)了32cm,所求運(yùn)動(dòng)時(shí)間為:t==16(s).

(2)當(dāng)△ABC的一邊所在的直線(xiàn)與半圓O所在的圓相切時(shí),半圓O與直徑DE圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分的只有如圖②與③所示的兩種情形.
①如圖②,設(shè)OA與半圓O的交點(diǎn)為M,易知重疊部分是圓心角為90°,半徑為6cm的扇形,所求重疊部分面積為:S扇形EOM=π×62=9π(cm2
②如圖③,設(shè)AB與半圓O的交點(diǎn)為P,連接OP,過(guò)點(diǎn)O作OH⊥AB,垂足為H.
則PH=BH.在Rt△OBH中,∠OBH=30°,OB=6cm
則OH=3cm,BH=3cm,BP=6cm,S△POB=×6×3=9(cm2
又因?yàn)椤螪OP=2∠DBP=60°
所以S扇形DOP==6π(cm2
所求重疊部分面積為:S△POB+S扇形DOP=9+6π(cm2

點(diǎn)評(píng):本題利用了直線(xiàn)與圓相切的概念,扇形的面積公式,直角三角形的面積公式,銳角三角函數(shù)的概念求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是某學(xué)校田徑體育場(chǎng)一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長(zhǎng)相等的平行線(xiàn)段,彎道為同心的半圓型,彎道與直道相連接,已知直精英家教網(wǎng)道BC的長(zhǎng)86.96米,跑道的寬為l米.(π=3.14,結(jié)果精確到0.01)
(1)求第一條跑道的彎道部分
AB
的半徑.
(2)求一圈中第二條跑道比第一條跑道長(zhǎng)多少米?
(3)若進(jìn)行200米比賽,求第六道的起點(diǎn)F與圓心O的連線(xiàn)FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線(xiàn)于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于


  1. A.
    8πB
  2. B.
    16π
  3. C.
    25π
  4. D.
    12.5π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省恩施州咸豐縣中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

同步練習(xí)冊(cè)答案