【題目】如圖,矩形OABC的兩條邊在坐標(biāo)軸上,OA=1,OC=2,現(xiàn)將此矩形向右平移,每次平移1個(gè)單位,若第1次平移得到的矩形的邊與反比例函數(shù)圖象有兩個(gè)交點(diǎn),它們的縱坐標(biāo)之差的絕對值為0.6,則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個(gè)交點(diǎn)的縱坐標(biāo)之差的絕對值為(用含n的代數(shù)式表示)

【答案】
【解析】解:設(shè)反比例函數(shù)解析式為y= ,則
①與BC,AB平移后的對應(yīng)邊相交;
與AB平移后的對應(yīng)邊相交的交點(diǎn)的坐標(biāo)為(2,1.4),
則1.4= ,
解得k=2.8= ,
故反比例函數(shù)解析式為y=
則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個(gè)交點(diǎn)的縱坐標(biāo)之差的絕對值為: = ;
②與OC,AB平移后的對應(yīng)邊相交;
k﹣ =0.6,
解得k=
故反比例函數(shù)解析式為y=
則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個(gè)交點(diǎn)的縱坐標(biāo)之差的絕對值為: =
故第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個(gè)交點(diǎn)的縱坐標(biāo)之差的絕對值為
所以答案是:

【考點(diǎn)精析】掌握反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(a,1)、B(﹣1,b)都在雙曲線y=﹣ 上,點(diǎn)P、Q分別是x軸、y軸上的動(dòng)點(diǎn),當(dāng)四邊形PABQ的周長取最小值時(shí),PQ所在直線的解析式是( 。

A.y=x
B.y=x+1
C.y=x+2
D.y=x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠EOF=60°,PAOFPBOE,PCOF于點(diǎn)C,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù)y= 的圖象交于點(diǎn)A(2,3),
(1)求k,m的值;
(2)寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為⊙O的直徑,作⊙O的內(nèi)接正三角形ABC,甲、乙兩人的作法分別是: 甲:①、作OD的中垂線,交⊙O于B,C兩點(diǎn),
②、連接AB,AC,△ABC即為所求的三角形
乙:①、以D為圓心,OD長為半徑作圓弧,交⊙O于B,C兩點(diǎn).
②、連接AB,BC,CA.△ABC即為所求的三角形.
對于甲、乙兩人的作法,可判斷(

A.甲、乙均正確
B.甲、乙均錯(cuò)誤
C.甲正確、乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°

(1)用尺規(guī)作AB的垂直平分線MNBC于點(diǎn)P(不寫作法,保留作圖痕跡).

(2)連接AP,如果AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明是個(gè)愛動(dòng)腦筋的學(xué)生,在學(xué)習(xí)了解直角三角形以后,一天他去測量學(xué)校的旗桿DF的高度,此時(shí)過旗桿的頂點(diǎn)F的陽光剛好過身高DE為1.6米的小明的頭頂且在他身后形成的影長DC=2米.

(1)若旗桿的高度FG是a米,用含a的代數(shù)式表示DG.
(2)小明從點(diǎn)C后退6米在A的測得旗桿頂點(diǎn)F的仰角為30°,求旗桿FG的高度.(點(diǎn)A、C、D、G在一條直線上, ,結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B=38°,C=112°.(1)按下列要求作圖:(保留作圖痕跡)

BC邊上的高AD;

②∠A的平分線AE.

(2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程4x2+4(a﹣1)x+a2﹣a﹣2=0沒有實(shí)數(shù)根.
(1)求實(shí)數(shù)a的取值范圍;
(2)化簡:

查看答案和解析>>

同步練習(xí)冊答案