設(shè)方程5(x-3)=3x-7的解為x1,方程=1+的解是x2,求代數(shù)式(x1+x2)(-x1x2)的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011-2012年山東省無(wú)棣縣九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(10分)閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請(qǐng)利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆山東省無(wú)棣縣十校九年級(jí)上學(xué)期期中聯(lián)考數(shù)學(xué)卷 題型:解答題

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請(qǐng)利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省長(zhǎng)汀縣城區(qū)五校九年級(jí)第一次月考聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,

解得y1=1,y2=4.當(dāng)y=1時(shí),x2-1=1,

∴x2=2,

∴x=±;當(dāng)y=4時(shí),x2-1=4,

∴x2=5,

∴x=±

故原方程的解為  x1,x2=-,x3,x4=-

上述解題方法叫做換元法;

請(qǐng)利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省無(wú)棣縣十校九年級(jí)上學(xué)期期中聯(lián)考數(shù)學(xué)卷 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個(gè)整體,然后設(shè) x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當(dāng)y=1時(shí),x2-1=1,∴x2=2,∴x=±;當(dāng)y=4時(shí),x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請(qǐng)利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

同步練習(xí)冊(cè)答案