如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.

(1)求證:BE=CE;

(2)若BD=2,BE=3,求AC的長(zhǎng).

 


(1)證明:連結(jié)AE,如圖,

∵AC為⊙O的直徑,

∴∠AEC=90°,

∴AE⊥BC,

而AB=AC,

∴BE=CE;

(2)連結(jié)DE,如圖,

∵BE=CE=3,

∴BC=6,

∵∠BED=∠BAC,

而∠DBE=∠CBA,

∴△BED∽△BAC,

=,即=

∴BA=9,

∴AC=BA=9.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


的絕對(duì)值等于( 。

 

A.

﹣3

B.

3

C.

D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:(﹣1)4﹣2tan60°++

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


甲、乙兩布袋裝有紅、白兩種小球,兩袋裝球總數(shù)量相同,兩種小球僅顏色不同.甲袋中,紅球個(gè)數(shù)是白球個(gè)數(shù)的2倍;乙袋中,紅球個(gè)數(shù)是白球個(gè)數(shù)的3倍,將乙袋中的球全部倒入甲袋,隨機(jī)從甲袋中摸出一個(gè)球,摸出紅球的概率是( 。

 

A.

B.

C.

D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點(diǎn)A、B的坐標(biāo)分別為(0,2),(3,4),點(diǎn)P為x軸上的一點(diǎn),若點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)B′恰好落在x軸上,則點(diǎn)P的坐標(biāo)為  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:(ab23=( 。

     A. 3ab2    B.   ab6     C.     a3b6      D.      a3b2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


)因式分解:x2﹣49= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


閱讀理解

拋物線y=x2上任意一點(diǎn)到點(diǎn)(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質(zhì)解決問題.

問題解決

如圖,在平面直角坐標(biāo)系中,直線y=kx+1與y軸交于C點(diǎn),與函數(shù)y=x2的圖象交于A,B兩點(diǎn),分別過A,B兩點(diǎn)作直線y=﹣1的垂線,交于E,F(xiàn)兩點(diǎn).

(1)寫出點(diǎn)C的坐標(biāo),并說明∠ECF=90°;

(2)在△PEF中,M為EF中點(diǎn),P為動(dòng)點(diǎn).

①求證:PE2+PF2=2(PM2+EM2);

②已知PE=PF=3,以EF為一條對(duì)角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知橢圓,左、右兩個(gè)焦點(diǎn)分別為,上頂點(diǎn)為正三角形且周長(zhǎng)為6.

(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;

(2)為坐標(biāo)原點(diǎn),是直線上的一個(gè)動(dòng)點(diǎn),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案