【題目】如圖,二次函數(shù)y=x22+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點A1,0)及點B

1)求二次函數(shù)與一次函數(shù)的解析式;

2)根據(jù)圖象,寫出滿足kx+b≥x22+mx的取值范圍.

【答案】1)二次函數(shù)解析式為y=x221;一次函數(shù)解析式為y=x1.(21≤x≤4

【解析】

1)將點A1,0)代入y=x-22+m求出m的值,根據(jù)點的對稱性,將y=3代入二次函數(shù)解析式求出B的橫坐標,再根據(jù)待定系數(shù)法求出一次函數(shù)解析式.

2)根據(jù)圖象和A、B的交點坐標可直接求出kx+b≥x-22+mx的取值范圍.

解:(1)將點A10)代入y=x22+m得,(122+m=0,解得m=1

∴二次函數(shù)解析式為y=x221

x=0時,y=41=3,∴C點坐標為(0,3).

∵二次函數(shù)y=x221的對稱軸為x=2, CB關(guān)于對稱軸對稱,

B點坐標為(4,3).

A1,0)、B4,3)代入y=kx+b得,

,解得

∴一次函數(shù)解析式為y=x1

2)∵A、B坐標為(1,0),(43),

∴當kx+b≥x22+m時,直線y=x1的圖象在二次函數(shù)y=x221的圖象上方或相交,此時1≤x≤4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC中,E、FACAB中點,EF延長線交△ABC外接圓于P,則PBAP的數(shù)值為_____(提示:圓內(nèi)接四邊形對角互補)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,

OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是【 】

A.(2,3) B.(2,-3) C.(3,2)或(-2,3) D.(2,3)或(2,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明放學(xué)回家看到桌上有一盤小麻糕,媽媽說當中有芝麻餡、肉餡各1個,青菜餡2個,這些小麻糕除餡外無其他差別.

(1)小明隨機從盤中取出一個小麻糕,取出的是芝麻餡的概率是_________.

(2)小明隨機從盤中一次取出兩個小麻糕,試用畫樹狀圖或列表的方法表示所有可能的結(jié)果,并求取出的兩個都是青菜餡的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,EBC的中點,連接AE、DE

1)求證:DE是⊙O的切線;

2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S25S1,求tanBAC的值;

3)在(2)的條件下,若AE3,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形ABCD中,∠B=60°,PQ同時從B出發(fā),以每秒1個單位長度分別沿B→A→D→CB→C→D方向運動至相遇時停止.設(shè)運動時間為t(),△BPQ的面積為S(平方單位)St的函數(shù)圖象如圖2,則下列結(jié)論錯誤的個數(shù)有( )

t=4秒時,S=;②AD=4;4≤t≤8時,S=;t=9秒時,BP平分梯形ABCD的面積.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象過點(0,3),頂點坐標為(﹣4,11).

1)求這個二次函數(shù)的表達式;

2)求這個二次函數(shù)圖象與x軸交點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A.天氣預(yù)報說明天降水的概率為 10%,則明天一定是晴天

B.任意拋擲一枚均勻的 1 元硬幣,若上一次正面朝上,則下一次一定反面朝上

C.13 人中至少有 2 人的出生月份相同

D.任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3 的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明調(diào)查了本校九年級300名學(xué)生到校的方式,根據(jù)調(diào)査結(jié)果繪制出統(tǒng)計圖的一部分如圖:

1)補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中表示步行的扇形圓心角的度數(shù);

3)請估計在全校1200名學(xué)生中乘公交的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案