【題目】如圖,在菱形ABCD中,點(diǎn)E、F在對(duì)角線AC上,且AE=CF,
(1)證明:△ABE≌△ADE;
(2)證明:四邊形BFDE是菱形;
(3)若AC=4,BD=8,AE=,請(qǐng)求出四邊形BFDE的面積.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)根據(jù)菱形的性質(zhì)可得AB=AD,∠BAE=∠DAE,再利用SAS證明△ABE≌△ADE即可;(2)連接BD,交AC于O,易證OB=OD,EF⊥BD,OE=OF,根據(jù)對(duì)角線互相垂直平分的四邊形為菱形即可判定四邊形BFDE是菱形;(3)根據(jù)已知條件求得EF的長(zhǎng),再由菱形的面積為兩條對(duì)角線乘積的一半即可求得四邊形BFDE的面積.
(1)證明:∵四邊形ABCD是菱形,
∴AB=AD,∠BAE=∠DAE,
在△ABE和△ADE中, ,
∴△ABE≌△ADE(SAS);
(2)證明:連接BD,交AC于O,如圖所示:
∵四邊形ABCD是菱形,
∴AC⊥BD,OA=OC,OB=OD,
∴EF⊥BD,
∴AE=CF,
∴OE=OF,
∴四邊形BFDE是菱形;
(3)解:∵AC=4,AE=,AE=CF,
∴EF=AC﹣2AE=4﹣2=2,
由(2)知:四邊形BFDE是菱形,
∴四邊形BFDE的面積=EF×BD=×2×8=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有以下六個(gè)命題,①同旁內(nèi)角互補(bǔ);②若x2=4,則x=2;③;④平分弦的直徑垂直于弦;⑤等弧所對(duì)的圓心角相等;⑥相等的圓心角所對(duì)的弧相等.從這六個(gè)命題中隨機(jī)任意抽取一個(gè)命題是真命題的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “買一張電影票,座位號(hào)為偶數(shù)”是必然事件
B. 若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定
C. 一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5
D. 一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示的圖形,其中AB⊥BE,EF⊥BE,AF交BE于點(diǎn)D,C在BD上,有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A、B間距離的有( )
A. 4組B. 3組C. 2組D. 1組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點(diǎn).
(1)求b的值;
(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個(gè)單位,使平移后的圖象與x軸無(wú)交點(diǎn),求k的最小值;
(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象,請(qǐng)你結(jié)合新圖象回答:當(dāng)直線y=x+n與這個(gè)新圖象有兩個(gè)公共點(diǎn)時(shí),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動(dòng)中,小明發(fā)現(xiàn)將兩塊不同的等腰直角三角板進(jìn)行旋轉(zhuǎn),能得到一組結(jié)論:在其中一塊三角板Rt△ABC,AB=BC=4,∠B為直角,將另一塊等腰直角三角板的直角頂點(diǎn)放在斜邊AC的中點(diǎn)O處,將三角板繞點(diǎn)O旋轉(zhuǎn),三角板的兩直角邊分別交AB、BC或其延長(zhǎng)線于E、F兩點(diǎn),如圖①與②是旋轉(zhuǎn)三角板所得圖形的兩種情況.
(1)三角板繞點(diǎn)O旋轉(zhuǎn),△OFC是否能成為等腰直角三角形?若能,求出CF;若不能,請(qǐng)說明理由;
(2)三角板繞點(diǎn)O旋轉(zhuǎn),線段OE和OF之間有什么數(shù)量關(guān)系?用圖②加以證明;
(3)若將三角板的直角原點(diǎn)放在斜邊上的點(diǎn)P處(如圖③),當(dāng),PF和PE有怎樣的數(shù)量關(guān)系,證明你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是曲線,BC是線段,點(diǎn)P從點(diǎn)A出發(fā)以不變的速度沿A﹣B﹣C運(yùn)動(dòng),到終點(diǎn)C停止,過點(diǎn)P分別作x軸、y軸的垂線分別交x軸、y軸于點(diǎn)M、點(diǎn)N,設(shè)矩形MONP的面積為S運(yùn)動(dòng)時(shí)間為(秒),S與t的函數(shù)關(guān)系如圖2所示,(FD為平行x軸的線段)
(1)直接寫出k、a的值.
(2)求曲線AB的長(zhǎng)l.
(3)求當(dāng)2≤t≤5時(shí)關(guān)于的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)C、D為x軸上動(dòng)點(diǎn),若CD=3AB,四邊形ABCD的面積為4,則這個(gè)反比例函數(shù)的解析式為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com