【題目】如圖,四邊形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四邊形ABCD的面積.

【答案】解:連接AC,過點(diǎn)C作CE⊥AB于點(diǎn)E.

∵AD⊥CD,

∴∠D=90°.

在Rt△ACD中,AD=5,CD=12,

AC= = =13.

∵BC=13,

∴AC=BC.

∵CE⊥AB,AB=10,

∴AE=BE= AB= ×10=5.

在Rt△CAE中,

CE= = =12.

∴S四邊形ABCD=SDAC+SABC= ×5×12+ ×10×12=30+60=90.


【解析】抓住題中關(guān)鍵的已知條件,AD⊥CD及CD=12,AD=5,因此連接AC,利用勾股定理求出AC的長,即可得出AC=BC,可知△CAB是等腰三角形,由此添加輔助線過點(diǎn)C作CE⊥AB于點(diǎn)E,利用勾股定理求出△CAB的高CE,要求四邊形ABCD的面積,就轉(zhuǎn)化為求△CAB和△ACD的面積,即可求解。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的面積的相關(guān)知識,掌握三角形的面積=1/2×底×高,以及對等腰三角形的判定的理解,了解如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(簡稱:等角對等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+1與反比例函數(shù)y= 的圖象交于A,B兩點(diǎn),已知點(diǎn)A的坐標(biāo)為(1,a),點(diǎn)B的坐標(biāo)為(b,﹣1).

(1)求此反比例函數(shù)的解析式;
(2)當(dāng)一次函數(shù)y=x+1的值大于反比例函數(shù)y= 的值時(shí),求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)F、C是⊙O上兩點(diǎn),且 = = ,連接AC、AF,過點(diǎn)C作CD⊥AF,交AF的延長線于點(diǎn)D,垂足為D,若CD=2 ,則⊙O的半徑為(
A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2,0)、(0,4),P是△AOB外接圓⊙C上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=80°,OE平分∠MON,點(diǎn)A、BC分別是射線OM、OE、ON上的動(dòng)點(diǎn)(A、B、C不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°.

(1)如圖1,若ABON,則:①∠ABO的度數(shù)是      ;

②如圖2,當(dāng)∠BAD=ABD時(shí),試求x的值(要說明理由);

(2)如圖3,若ABOM,則是否存在這樣的X的值,使得△ADB中有兩個(gè)相等的角?若存在,直接寫出x的值;若不存在,說明理由.(自己畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.

(1)求證:四邊形AODE是矩形;
(2)若AB=6,∠BCD=120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題

1)一個(gè)學(xué)生有中國郵票和外國郵票共25張,中國郵票的張數(shù)比外國郵票的張數(shù)的2倍少2張,這個(gè)學(xué)生有中國郵票和外國郵票各多少張?

2)甲乙二人相距18千米,二人同時(shí)出發(fā)相向而行,1小時(shí)相遇;同時(shí)出發(fā)同向而行,甲3小時(shí)可以追上乙。求二人的平均速度各是多少?

3)國家為九年義務(wù)教育期間的學(xué)生實(shí)行“兩免一補(bǔ)”政策,下表是某地區(qū)某中學(xué)國家免費(fèi)提供教科書補(bǔ)助的部分情況。

合計(jì)

每人免費(fèi)補(bǔ)助金額(元)

110

90

50

——

人數(shù)(人)

80

300

免費(fèi)補(bǔ)助金額(元)

4000

26200

請問該校七、八年級各有學(xué)生多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設(shè)甲與A地相距(km),乙與A地相距(km),甲離開A地的時(shí)間為x(h),,與x之間的函數(shù)圖象如圖所示.

(1)甲的速度是 km/h;

(2)當(dāng)1≤x≤5時(shí),求關(guān)于x的函數(shù)解析式;

(3)當(dāng)乙與A地相距240km時(shí),甲與A地相距 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?

查看答案和解析>>

同步練習(xí)冊答案