【題目】將一條長(zhǎng)為48cm的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于74cm2,那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于68cm2嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說明理由.
(3)該怎么剪,才能使這兩個(gè)正方形的面積之和為最小,最小值是多少?
【答案】(1)20cm和28cm;(2)不能,理由見解析;(3)剪成兩段的長(zhǎng)度分別為24cm和24cm時(shí),面積之和最小,72
【解析】
(1)這段鐵絲被分成兩段后,圍成正方形,設(shè)其中一個(gè)正方形的長(zhǎng)為xcm,表示出另一個(gè)的長(zhǎng),然后根據(jù)“兩個(gè)正方形的面積之和等于74cm2”作為相等關(guān)系列方程,解方程即可求解;(2)與(1)一樣列出方程,利用根的判別式進(jìn)行判斷即可;(3)運(yùn)用配方法將正方形的面積之和改為頂點(diǎn)式,然后分析最值.
解:設(shè)一個(gè)正方形的邊長(zhǎng)為xcm,則另一個(gè)正方形的邊長(zhǎng)為(12-x)cm
則=
(1由題意可得:,
解得:
5×4=20;7×4=28
答:剪成兩段的長(zhǎng)度分別為20cm和28cm
(2)由題意可得:,
,
,
原方程無實(shí)數(shù)根
∴不能
(3)由題意可得:,
∵a=2>0
當(dāng)時(shí),y有最小值為72
因此,剪成兩段的長(zhǎng)度分別為24cm和24cm時(shí),面積之和最小,為72
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程,
(1)求證:該一元二次方程總有兩個(gè)實(shí)數(shù)根;
(2)若該方程只有一個(gè)小于4的根,求m的取值范圍;
(3)若x1,x2為方程的兩個(gè)根,且n=x12+x22﹣4,判斷動(dòng)點(diǎn)所形成的數(shù)圖象是否經(jīng)過點(diǎn),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),函數(shù)與自變量的部分對(duì)應(yīng)值如下表:
… | —4 | —3 | —2 | —1 | 0 | … | |
… | 3 | —2 | —5 | —6 | —5 | … |
則下列判斷中正確的是( )
A. 拋物線開口向下 B. 拋物線與軸交于正半軸
C. 方程的正根在1與2之間 D. 當(dāng)時(shí)的函數(shù)值比時(shí)的函數(shù)值大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①,在正方形中,,點(diǎn),分別在,上,連接,若,,以為斜邊,向下作直角三角形,則在邊上存在 個(gè)符合條件的直角頂點(diǎn);
問題探究:
(2)如圖②,在(1)的條件下,是符合題意的一個(gè)直角三角形,求的面積;
問題解決:
(3)某小區(qū)有一個(gè)邊長(zhǎng)為40米的正方形活動(dòng)區(qū)域,小區(qū)物業(yè)在一面墻的處安裝臺(tái)監(jiān)控器,該監(jiān)控器的視角為,監(jiān)控器可以左右來回轉(zhuǎn)動(dòng),并且可以監(jiān)控該區(qū)域的每一個(gè)地方.如圖③,正方形是過點(diǎn)的一個(gè)水平面,,與正方形在同一個(gè)平面內(nèi),連接,若為面積的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是( )
A. (4n﹣1,)B. (2n﹣1,)C. (4n+1,)D. (2n+1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=x+的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=x+的自變量x的取值范圍是_____.
(2)下表列出了y與x的幾組對(duì)應(yīng)值,請(qǐng)寫出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,請(qǐng)完成:
①當(dāng)y=﹣時(shí),x=_____.
②寫出該函數(shù)的一條性質(zhì)_____.
③若方程x+=t有兩個(gè)不相等的實(shí)數(shù)根,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點(diǎn)O和點(diǎn)A(2,0),B(﹣1,2)三點(diǎn).
(1)寫出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大小,并說明理由;
(3)點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com