【題目】AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm,△ABD與△ACD的周長(zhǎng)之差為cm.

【答案】2
【解析】∵AD是邊BC上的中線,
∴BD=CD.
∵△ABD的周長(zhǎng)為:AB+BD+AD,
△ACD的周長(zhǎng)為:AC+CD+AD,
∴△ABD與△ACD的周長(zhǎng)之差為:(AB+BD+AD)-(AC+CD+AD)=AB-AC,
又∵AB=5cm,AC=3cm,
∴AB-AC=2(cm).
即△ABD與△ACD的周長(zhǎng)之差為2cm.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的“三線”的相關(guān)知識(shí),掌握1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對(duì)邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1時(shí)30分時(shí),時(shí)鐘的時(shí)針與分針的夾角是______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在紀(jì)念中國(guó)抗日戰(zhàn)爭(zhēng)勝利70周年之際,某公司決定組織員工觀看抗日戰(zhàn)爭(zhēng)題材的影片,門票有甲乙兩種,甲種票比乙種票每張貴6元;買甲種票10張,乙種票15張共用去660元.

1)求甲、乙兩種門票每張各多少元?

2)如果公司準(zhǔn)備購(gòu)買35張門票且購(gòu)票費(fèi)用不超過(guò)1000元,那么最多可購(gòu)買多少?gòu)埣追N票?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

1)請(qǐng)問(wèn)采摘的黃瓜和茄子各多少千克?

2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,ABBC=4:3,周長(zhǎng)為28cm,則AD= ____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好的保護(hù)美麗圖畫(huà)的邛海濕地,西昌市污水處理廠決定先購(gòu)買A、B兩型污水處理設(shè)備共20臺(tái),對(duì)邛海濕地周邊污水進(jìn)行處理,每臺(tái)A型污水處理設(shè)備12萬(wàn)元,每臺(tái)B型污水處理設(shè)備10萬(wàn)元.已知1臺(tái)A型污水處理設(shè)備和2臺(tái)B型污水處理設(shè)備每周可以處理污水640噸,2臺(tái)A型污水處理設(shè)備和3臺(tái)B型污水處理設(shè)備每周可以處理污水1080噸.

1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?

2)經(jīng)預(yù)算,市污水處理廠購(gòu)買設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4500噸,請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明過(guò)程. 如圖,在△ABC中,∠B=∠C,D、E、F分別在AB、BC、AC上,且BD=CE,∠DEF=∠B,說(shuō)明ED=EF.
解:∵∠DEC=∠B+∠BDE (),
又∵∠DEF=∠B(已知),
∴∠=∠(等式性質(zhì)).
在△EBD與△FCE中,
=∠(已證),
=(已知),
∠B=∠C(已知),
∴△EBD≌△FCE().
∴ED=EF ().

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校規(guī)劃在一塊長(zhǎng)AD18m,寬AB13m的長(zhǎng)方形場(chǎng)地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮.

1)如圖1,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM:AN=89,問(wèn)通道的寬是多少?

2)為了建造花壇,要修改(1)中的方案,如圖2,將三條通道改為兩條通道,縱向的寬度改為橫向?qū)挾鹊?/span>2倍,其余四塊草坪相同,且每一塊草坪均有一邊長(zhǎng)為8m,這樣能在這些草坪建造花壇.如圖3,在草坪RPCQ中,已知REPQ于點(diǎn)ECFPQ于點(diǎn)F,求花壇RECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車制造廠開(kāi)發(fā)一款新式電動(dòng)汽車,計(jì)劃一年生產(chǎn)安裝240輛.由于抽調(diào)不出足夠的熟練工來(lái)完成新式電動(dòng)汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過(guò)培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動(dòng)汽車的安裝.生產(chǎn)開(kāi)始后,調(diào)研部門發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動(dòng)汽車;2名熟練工和3名新工人每月可安裝14輛電動(dòng)汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動(dòng)汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案