(本題6分)A、B兩地分別有水泥20噸和30噸,C、D兩地分別需要水泥15噸和35噸;已知從A、B到C、D的運(yùn)價(jià)如下表:
|
到C地 |
到D地 |
A地 |
每噸15元 |
每噸12元 |
B地 |
每噸10元 |
每噸9元 |
1.(1)若從A地運(yùn)到C地的水泥為x噸,則用含x的式子表示從A地運(yùn)到D地的水泥
為 噸,從A地將水泥運(yùn)到D地的運(yùn)輸費(fèi)用為 元。
2.(2)用含x的代數(shù)式表示從A、B兩地運(yùn)到C、D兩地的總運(yùn)輸費(fèi),并化簡該式子。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題8分) 有A、B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字,和-4.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再從B布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(x,y).
(1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);
(2)求點(diǎn)Q落在直線y=-X-2上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題8分)
甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語口語競賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)圖表.
1.(1)在圖1中,“7分”所在扇形的圓心角等于 °.
2.(2)請你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整.
3.(3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績較好.
4.(4)如果該教育局要組織8人的代表隊(duì)參加市級團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請你分析,應(yīng)選哪所學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本題12分)如圖,兩個(gè)同樣大小的等邊△ABC和△ACD,邊長為a,它們拼成一個(gè)菱形ABCD,另一個(gè)足夠大的等邊△AEF繞點(diǎn)A旋轉(zhuǎn),AE與BC相交于點(diǎn)M,AF與CD相交于點(diǎn)N。
1.(1)證明:∠DAN=∠CAM;
2.(2)求四邊形AMCN的面積;
3.(3)探索△AMN何時(shí)面積最小,并寫出這個(gè)最小面積的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年浙江省義蓬片九年級第一學(xué)期第一階段考試數(shù)學(xué)卷 題型:解答題
(本題8分) 有A、B兩個(gè)黑布袋,A布袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2.B布袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字,和-4.小明從A布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為x,再從B布袋中隨機(jī)取出一個(gè)小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)Q的一個(gè)坐標(biāo)為(x,y).
(1)用列表或畫樹狀圖的方法寫出點(diǎn)Q的所有可能坐標(biāo);
(2)求點(diǎn)Q落在直線y=-X-2上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011屆山東省濱州市濱城區(qū)九年級第一學(xué)期期中學(xué)業(yè)水平測試數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,兩個(gè)同樣大小的等邊△ABC和△ACD,邊長為a,它們拼成一個(gè)菱形ABCD,另一個(gè)足夠大的等邊△AEF繞點(diǎn)A旋轉(zhuǎn),AE與BC相交于點(diǎn)M,AF與CD相交于點(diǎn)N。
1.(1)證明:∠DAN=∠CAM;
2.(2)求四邊形AMCN的面積;
3.(3)探索△AMN何時(shí)面積最小,并寫出這個(gè)最小面積的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com