在解決與梯形有關(guān)的問題時(shí),往往需要添加一些輔助線,將梯形轉(zhuǎn)化為三角形、平行四邊形或矩形,再用這些特殊圖形的性質(zhì)進(jìn)行求解.添加輔助線的主要方法有:________等.

答案:平移兩腰;平移對(duì)角線;作高;延長(zhǎng)兩腰等。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,某灌溉設(shè)備的噴頭B高出地面1.25m,噴出的拋物線形水流在與噴頭底部A的距離為1m處達(dá)到距地面最大高度2.25m.試在恰當(dāng)?shù)闹苯亲鴺?biāo)系中求出與該拋物線水流對(duì)應(yīng)的二次函數(shù)關(guān)系式.
小明在解答下圖所示的問題時(shí),寫下了如下解答過程:

①以水流的最高點(diǎn)為原點(diǎn),過原點(diǎn)的水平線為橫軸,過原點(diǎn)的鉛垂線為縱軸建立如圖所示的平面直角坐標(biāo)系;
②設(shè)拋物線的解析式為y=ax2;
③則B點(diǎn)的坐標(biāo)為(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
問:(1)小明的解答過程是否正確,若不正確,請(qǐng)你加以改正;
(2)噴出的水流能否澆灌到地面上距離A點(diǎn)3.5m的莊稼上(圖上莊稼在A點(diǎn)的右側(cè),莊稼的高度不計(jì)),若不能請(qǐng)你在上圖所示的坐標(biāo)系中將噴頭B上下或左右平移,問至少要平移多少距離才能澆灌到地面的莊稼,并求出此時(shí)噴出的拋物線形水流的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索問題:(1)比較下列數(shù)的大。
2
3
 
3
4
5
13
 
9
17
,
14
23
 
19
28

(2)根據(jù)上述規(guī)律,可以得出下面的結(jié)論:一個(gè)真分?jǐn)?shù)
a
b
(a、b均為正數(shù)),給其分子、分母同加上一個(gè)正數(shù)m,得
a+m
b+m
,則這兩個(gè)分?jǐn)?shù)的大小關(guān)系是:
a
b
 
a+m
b+m

(3)請(qǐng)你用文字?jǐn)⑹觯?)中的結(jié)論:
 

(4)請(qǐng)你用圖形的面積說明(2)中結(jié)論的正確性.
(5)請(qǐng)你用已學(xué)的其他數(shù)學(xué)知識(shí)說明(2)中結(jié)論的正確性.
(6)這個(gè)結(jié)論可以解釋生活中的許多現(xiàn)象,解決生活中許多與數(shù)學(xué)有關(guān)的問題.請(qǐng)你再提出一個(gè)類似的數(shù)學(xué)問題,或舉出一個(gè)生活中與此結(jié)論相關(guān)的例子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•西城區(qū)一模)先閱讀材料,再解答問題:
小明同學(xué)在學(xué)習(xí)與圓有關(guān)的角時(shí)了解到:在同圓或等圓中,同。ɑ虻然。┧鶎(duì)的圓周角相等.如圖,點(diǎn)A、B、C、D均為⊙O上的點(diǎn),則有∠C=∠D.小明還發(fā)現(xiàn),若點(diǎn)E在⊙O外,且與點(diǎn)D在直線AB同側(cè),則有∠D>∠E.
請(qǐng)你參考小明得出的結(jié)論,解答下列問題:

(1)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,7),點(diǎn)B的坐標(biāo)為(0,3),點(diǎn)C的坐標(biāo)為(3,0).
①在圖1中作出△ABC的外接圓(保留必要的作圖痕跡,不寫作法);
②若在x軸的正半軸上有一點(diǎn)D,且∠ACB=∠ADB,則點(diǎn)D的坐標(biāo)為
(7,0)
(7,0)
;
(2)如圖2,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,m),點(diǎn)B的坐標(biāo)為(0,n),其中m>n>0.點(diǎn)P為x軸正半軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠APB達(dá)到最大時(shí),直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(1)閱讀下面問題的解法,并填空:
4位朋友在一起,每?jī)扇宋找淮问,共握多少次手?br />小莉是這樣分析的:每一位朋友都與其他3位握手,共握3次手,則4位朋友共與其他3人握手3×4次.但以上算法中,將每?jī)晌慌笥训?次握手重復(fù)計(jì)算成了2次,因此4位朋友實(shí)際共握手
3×4
2
=6次.
用上面的方法思考:n位朋友在一起,每?jī)扇宋找淮问郑参斩嗌俅问郑?br />每一位朋友都與其他(n-1)位握手,共握(n-1)次手,則n位朋友共與其他(n-1)人握手
n(n-1)
n(n-1)
次.但以上算法中,將每?jī)晌慌笥训?次握手重復(fù)計(jì)算成了2次,因此n位朋友實(shí)際共握手
n(n-1)
2
n(n-1)
2
次.
(2)試解決與上面類似的問題:在平面內(nèi)畫50條直線,最多有多少個(gè)交點(diǎn)?(要求:寫出說理過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案