(2013•海陵區(qū)模擬)如圖是泰州鳳城河邊的“望海樓”,小明學習測量物體高度后,利用星期天測量了望海樓AB的高度,小明首先在一空地上用高度為1.5米的測角儀CD豎直放置地面,測得點A的仰角為30°,沿著DB方向前進DE=24米,然后登上EF=2米高的平臺,又前進FG=2米到點G,再用1.5米高的測角儀測得點A的仰角為45°,圖中所有點均在同一平面,F(xiàn)G∥DB,CD∥FE∥AB∥GH.
(1)求點H到地面BD的距離;
(2)試求望海樓AB的高度約為多少米?(
3
≈1.73
,結果精確到0.1米)
分析:(1)根據(jù)題意點H到地面BD的距離很容易求出;
(2)設KH=x米,則AK=x米,AM=(x+2)米,在Rt△ACM中求出CM,根據(jù)總共前進的路程為26米,可得出方程,解出即可.
解答:解:(1)點H到BD的距離=2+1.5=3.5米;

(2)過點C作CM⊥AB,HK⊥AB,HG⊥FQ,
由題意得,∠AHK=45°,∠ACM=30°,
在Rt△AHK中,設KH=x米,則AK=x米,AM=(x+2)米,
在Rt△ACM中,CM=
3
(x+2)米,
由題意得,CM-AM=
3
(x+2)-x=26,
解得:x≈30.88,
故AB=30.88+3.5=34.38≈34.4米.
答:望海樓AB的高度約為34.4米.
點評:本題考查了解直角三角形的應用,解答本題的關鍵是理解仰角、俯角的定義,構造直角三角形,利用解直角三角形的知識解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•海陵區(qū)模擬)已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=8,AB=12,BC=13,E為CD上一點,BE=13,則S△ADE:S△BEC是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海陵區(qū)模擬)我市去年約有9700人參加中考,這個數(shù)據(jù)用科學記數(shù)法可表示為
9.7×103
9.7×103

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海陵區(qū)模擬)解答下列各題
(1)計算:|
3
-3|+(π-3)0+tan60°

(2)解不等式組:
5x>2x-6
x-4
5
x-1
4
-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•海陵區(qū)模擬)已知直線y=-
3
4
x+6
與x軸交于點B,與y軸交于點A.
(1)⊙P經(jīng)過點O、A、B,試求點P的坐標;
(2)如圖2,點Q為線段AB上一點,QM⊥OA、QN⊥OB,連結MN,試求△MON面積的最大值;
(3)在∠OAB內是否存在點E,使得點E到射線AO和AB的距離相等,且這個距離等于點E到x軸的距離的
2
3
?若存在,請直接寫出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案