【題目】定義新運(yùn)算:a*b=a(b﹣1),若a、b是關(guān)于一元二次方程x2﹣x+ m=0的兩實(shí)數(shù)根,則b*b﹣a*a的值為

【答案】0
【解析】解:∵a、b是關(guān)于一元二次方程x2﹣x+ m=0的兩實(shí)數(shù)根, ∴a2﹣a=﹣ m,b2﹣b=﹣ m,
∴b*b﹣a*a=b(b﹣1)﹣a(a﹣1)=b2﹣b﹣(a2﹣a)=﹣ m﹣(﹣ m)=0.
所以答案是:0.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解根與系數(shù)的關(guān)系(一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商),還要掌握實(shí)數(shù)的運(yùn)算(先算乘方、開方,再算乘除,最后算加減,如果有括號(hào),先算括號(hào)里面的,若沒有括號(hào),在同一級(jí)運(yùn)算中,要從左到右進(jìn)行運(yùn)算)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=15AC=13,BC邊上的高AD=12,則BC的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,當(dāng)且點(diǎn)在直線的上方時(shí),解決下列問題:(友情提示:,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請(qǐng)直接寫出的角度所有可能的值(不必說明理由);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AB為⊙O的直徑,C是⊙O上一點(diǎn),如圖,AB=12,BC=4 .BH與⊙O相切于點(diǎn)B,過點(diǎn)C作BH的平行線交AB于點(diǎn)E.

(1)求CE的長(zhǎng);
(2)延長(zhǎng)CE到F,使EF= ,連接BF并延長(zhǎng)BF交⊙O于點(diǎn)G,求BG的長(zhǎng);
(3)在(2)的條件下,連接GC并延長(zhǎng)GC交BH于點(diǎn)D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)如圖1,在正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)E是邊BC上一點(diǎn),連接OE,過點(diǎn)O作OE的垂線交AB于點(diǎn)F.求證:OE=OF.
(2)若將(1)中,“正方形ABCD”改為“矩形ABCD”,其他條件不變,如圖2,連接EF. ⅰ)求證:∠OEF=∠BAC.
ⅱ)試探究線段AF,EF,CE之間數(shù)量上滿足的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上的一點(diǎn),M是AB的中點(diǎn),N是CB的中點(diǎn).

(1)若AB=13,CB=5,求MN的長(zhǎng)度;

(2)若AC=6,求MN的長(zhǎng)度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)得到△EBD,點(diǎn)E、點(diǎn)D分別與點(diǎn)A、點(diǎn)C對(duì)應(yīng),且點(diǎn)D在邊AC上,邊DE交邊AB于點(diǎn)F,△BDC∽△ABC.已知BC= ,AC=5,那么△DBF的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,選段AB=4,以AB為直徑作半圓O,點(diǎn)C為弧AB的中點(diǎn),點(diǎn)P為直徑AB上一點(diǎn),聯(lián)結(jié)PC,過點(diǎn)C作CD∥AB,且CD=PC,過點(diǎn)D作DE∥PC,交射線PB于點(diǎn)E,PD與CE相交于點(diǎn)Q.
(1)若點(diǎn)P與點(diǎn)A重合,求BE的長(zhǎng);
(2)設(shè)PC=x, =y,當(dāng)點(diǎn)P在線段AO上時(shí),求y與x的函數(shù)關(guān)系式及定義域;
(3)當(dāng)點(diǎn)Q在半圓O上時(shí),求PC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案