【題目】A、B、C、D、E五位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)若已確定A打第一場,再從其余四位同學(xué)中隨機(jī)選取一位,求恰好選中B同學(xué)的概率;
(2)請用畫樹狀圖或列表法,求恰好選中A、B兩位同學(xué)的概率.

【答案】
(1)解:∵已確定A打第一場,再從其余四位同學(xué)中隨機(jī)選取一位,

∴P(恰好選中B)=


(2)解:列表得:

A

B

C

D

E

A

(B,A)

(C,A)

(D,A)

(E,A)

B

(A,B)

(C,B)

(D,B)

(E,B)

C

(A,C)

(B,C)

(D,C)

(E,C)

D

(A,D)

(B,D)

(C,D)

(E,D)

E

(A,E)

(B,E)

(C,E)

(D,E)

由列表格,可知:共有20種等可能的結(jié)果,恰好選中A、B兩位同學(xué)的有2種情況,

∴P(恰好選中A、B)= =


【解析】(1)由已確定A打第一場,再從其余四位同學(xué)中隨機(jī)選取一位,利用概率公式即可求得答案;(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結(jié)果與恰好選中A、B兩位同學(xué)的情況,再利用概率公式即可求得答案.
【考點(diǎn)精析】通過靈活運(yùn)用列表法與樹狀圖法,掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某校政教處對部分學(xué)生及家長就校園安全知識(shí)的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制成如圖所示的兩幅統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)參與調(diào)查的學(xué)生及家長共有人;
(2)在扇形統(tǒng)計(jì)圖中,“基本了解”所對應(yīng)的圓心角的度數(shù)是度;
(3)在條形統(tǒng)計(jì)圖中,“非常了解”所對應(yīng)的家長人數(shù)是人;
(4)若全校有1200名學(xué)生,請你估計(jì)對“校園安全”知識(shí)達(dá)到“非常了解”和“基本了解”的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張如圖1所示的長為a,寬為b(a>b)的小長方形紙片按圖2所示的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個(gè)長方形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,求a,b滿足的條件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過原點(diǎn)O,交x軸于點(diǎn)A,其頂點(diǎn)B的坐標(biāo)為(3,﹣ ).

(1)求拋物線的函數(shù)解析式及點(diǎn)A的坐標(biāo);
(2)在拋物線上求點(diǎn)P,使SPOA=2SAOB
(3)在拋物線上是否存在點(diǎn)Q,使△AQO與△AOB相似?如果存在,請求出Q點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為反比例函數(shù)y= (x>0)圖象上一點(diǎn),過點(diǎn)P分別向x軸,y軸作垂線,垂足分別為M、N,直線y=﹣x+2與PM、PN分別交于點(diǎn)E、F,與x軸、y軸分別交于A、B,則AFBE的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,平面直角坐標(biāo)系xOy中,四邊形OABC是矩形,點(diǎn)AC的坐標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過點(diǎn)D作直線y=-x+b交折線OAB于點(diǎn)E.

(1)在點(diǎn)D運(yùn)動(dòng)的過程中,若ODE的面積為S,求Sb的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對稱的圖形為矩形OABC′,CB分別交CB,OA于點(diǎn)DM,OA分別交CBOA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,BC、AD是⊙O的切線,切點(diǎn)分別為B、A,過點(diǎn)O作EC⊥OD,EC交BC于點(diǎn)C,交AD于點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,AD=3,求陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn) E、F分別為邊 AD、CD上的動(dòng)點(diǎn)(都與菱形的頂點(diǎn)不重合),聯(lián)結(jié) EF、BE、BF .

(1)若∠A=60°,且 AE+CF=AB,判斷△BEF 的形狀,并說明理由;

(2)在(1)的條件下,設(shè)菱形的邊長為a,求△BEF面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從南京到某市可乘坐普通列車,行駛路程是520千米;也可乘坐高鐵,行駛路程是400千米.已知高鐵的平均速度是普通列車平均速度的2.5倍,且從南京到該市乘坐高鐵比乘坐普通列車要少用3小時(shí).求高鐵行駛的平均速度.

查看答案和解析>>

同步練習(xí)冊答案