【題目】如圖,在四邊形ABCD中,AB=AD=4,∠A=60°,BC=4 ,CD=8.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
【答案】
(1)解:連接BD,
∵AB=AD,∠A=60°,
∴△ABD是等邊三角形,
∴∠ADB=60°,DB=4,
∵42+82=(4 )2,
∴DB2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=60°+90°=150°
(2)解:過B作BE⊥AD,
∵∠A=60°,AB=4,
∴BE=ABsin60°=4× =2 ,
∴四邊形ABCD的面積為: ADEB+ DBCD= ×4× + ×4×8=4 +16
【解析】(1)連接BD,首先證明△ABD是等邊三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理證明△BDC是直角三角形,進(jìn)而可得答案;(2)過B作BE⊥AD,利用三角形函數(shù)計(jì)算出BE長,再利用△ABD的面積加上△BDC的面積可得四邊形ABCD的面積.
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的逆定理,需要了解如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不能判定兩個(gè)三角形全等的條件是( )
A.三條邊對應(yīng)相等B.兩條邊及其夾角對應(yīng)相等
C.兩角及其中一角的對邊對應(yīng)相等D.兩條邊和一條邊所對的角對應(yīng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別是邊BC、AB上的點(diǎn),且CE=BF,連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系和位置關(guān)系;(不要求證明)
(2)如圖2,若點(diǎn)E、F分別是CB、BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷予以證明;
(3)如圖3,若點(diǎn)E、F分別是BC、AB延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場比賽,每場比賽都要分出勝負(fù),每隊(duì)勝一場得分, 負(fù)一場得分,積分超過分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場;
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要勝多少場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程中,沒有實(shí)數(shù)根的是( 。
A.x2﹣4x+4=0
B.x2﹣2x+5=0
C.x2﹣2x=0
D.x2﹣2x﹣3=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為5cm,點(diǎn)A到圓心O的距離OA=3cm,則點(diǎn)A與圓O的位置關(guān)系為( 。
A.點(diǎn)A在圓上
B.點(diǎn)A在圓內(nèi)
C.點(diǎn)A在圓外
D.無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com