【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).

(1) 求一次函數(shù)的表達(dá)式;

(2) 根據(jù)圖象寫出kx+b-<0x的取值范圍.

【答案】(1) 一次函數(shù)的解析式為y=-2x+8;(2) 0<x<1x>3

【解析】

(1)先把A、B點(diǎn)坐標(biāo)代入y=,求出m、n的值;然后將其分別代入一次函數(shù)解析式,列出關(guān)于系數(shù)k、b的方程組,通過解方程組求得它們的值即可;
(2)根據(jù)該不等式的解集即為直線在雙曲線下方時(shí)x的范圍即可寫出答案;

解:(1)∵點(diǎn)A(m,6),B(3,n)兩點(diǎn)在反比例函數(shù) (x>0)的圖象上,

6m=3n=6,

m=1,n=2,

A(1,6),B(3,2).

又∵點(diǎn)A(m,6),B(3,n)兩點(diǎn)在一次函數(shù)y=kx+b的圖象上,

解得

則該一次函數(shù)的解析式為:y=2x+8;

(2)根據(jù)圖象可知使成立的x的取值范圍是0<x<1x>3;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校就遇見路人摔倒后如何處理的問題,隨機(jī)抽取該校部分學(xué)生進(jìn)行問卷調(diào)查,圖1和圖2是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖. 請(qǐng)根據(jù)圖中提供的信息,解答下列問題:

(1)該校隨機(jī)抽查了 名學(xué)生?請(qǐng)將圖1補(bǔ)充完整;

(2)在圖2中,視情況而定部分所占的圓心角是 度;

(3)在這次調(diào)查中,甲、乙、丙、丁四名學(xué)生都選擇馬上救助,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于P,Q兩點(diǎn)給出如下定義:若點(diǎn)P到兩坐標(biāo)軸的距離之和等于點(diǎn)Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點(diǎn)為同族點(diǎn).下圖中的P,Q兩點(diǎn)即為同族點(diǎn).

(1)已知點(diǎn)A的坐標(biāo)為(,1),

①在點(diǎn)R(0,4),S(2,2),T(2, )中,為點(diǎn)A的同族點(diǎn)的是 ;

②若點(diǎn)Bx軸上,且A,B兩點(diǎn)為同族點(diǎn),則點(diǎn)B的坐標(biāo)為 ;

(2)直線l ,與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,

M為線段CD上一點(diǎn),若在直線上存在點(diǎn)N,使得MN兩點(diǎn)為同族點(diǎn),求n的取值范圍;

M為直線l上的一個(gè)動(dòng)點(diǎn),若以(m,0)為圓心, 為半徑的圓上存在點(diǎn)N,使得M,N兩點(diǎn)為同族點(diǎn),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)客車離甲地的距離為千米,出租車離甲地的距離為千米,兩車行駛的時(shí)間為小時(shí),、關(guān)于的函數(shù)圖像如圖所示:

1)根據(jù)圖像,求出、關(guān)于的函數(shù)關(guān)系式;

2)設(shè)兩車之間的距離為千米.

①求兩車相遇前關(guān)于的函數(shù)關(guān)系式;

②求出租車到達(dá)甲地后關(guān)于的函數(shù)關(guān)系式;

3)甲、乙兩地間有、兩個(gè)加油站,相距200千米,若客車進(jìn)入加油站時(shí),出租車恰好進(jìn)入加油站,求加油站離甲地的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)E、F分別是四邊形ABCD邊AB、AD上的點(diǎn),且DE與CF相交于點(diǎn)G.

(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:

(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時(shí),求證:DECD=CFDA:

(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時(shí),試判斷是否為定值,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PB為⊙O的切線,點(diǎn)B為切點(diǎn),直線PO交⊙O于點(diǎn)E,F,過點(diǎn)BPO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長(zhǎng)AO與⊙O交于點(diǎn)C,連接BCAF,

(1)求證:直線PA為⊙O的切線;

(2)若BC=6,tanF,求cosACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)慶節(jié)假日期間,昀昀一家去公園游玩,在一個(gè)場(chǎng)所有一個(gè)“守株待兔”的游戲,游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A、B、C、D四個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會(huì)是均等的.游戲規(guī)定:①玩家只能將小兔從A、B兩個(gè)出入口放入;②如果小兔進(jìn)入籠子后選擇從開始進(jìn)入的出入口離開,則可獲得一只價(jià)值4元的小兔玩具,否則應(yīng)付費(fèi)3元.

(1)畫樹狀圖或列表格,寫出該游戲的所有可能結(jié)果;

(2)昀昀玩該游戲得到小兔玩具的機(jī)會(huì)有多大?

(3)假設(shè)有120人次玩此游戲,估計(jì)游戲設(shè)計(jì)者可賺多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時(shí),A′C′CDE,D′C′CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時(shí),試探究△A′DE的形狀,并判斷△A′DE△EFC′是否全等?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(4分)一元二次方程的根的情況是(

A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根

C.沒有實(shí)數(shù)根 D無法確定

【答案】A

【解析】

試題∵△=,方程有兩個(gè)不相等的實(shí)數(shù)根.故選A.

考點(diǎn):根的判別式

型】單選題
結(jié)束】
9

【題目】已知直線y=kx(k>0)與雙曲線交于點(diǎn)A(x1,y1),B(x2,y2)兩點(diǎn),則x1y2+x2y1的值為【 】

A.﹣6 B.﹣9 C.0 D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案