【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(B在C的左側(cè)),交y軸于A、D兩點(diǎn)(A在D的下方),AD=,將△ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫(huà)出線(xiàn)段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);
(3)動(dòng)直線(xiàn)l從與BM重合的位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線(xiàn)l與CM交點(diǎn)為E,點(diǎn)Q為BE的中點(diǎn),過(guò)點(diǎn)E作EG⊥BC于G,連接MQ、QG.請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說(shuō)明理由.
【答案】(1)B(﹣3,0),C(1,0);(2)矩形,M的坐標(biāo)為(﹣2,);(3)在旋轉(zhuǎn)過(guò)程中∠MQG的大小不變,始終等于120°.
【解析】試題分析:(1)連接PA,運(yùn)用垂徑定理及勾股定理即可求出圓的半徑,從而可以求出B、C兩點(diǎn)的坐標(biāo).
(2)由于圓P是中心對(duì)稱(chēng)圖形,顯然射線(xiàn)AP與圓P的交點(diǎn)就是所需畫(huà)的點(diǎn)M,連接MB、MC即可;易證四邊形ACMB是矩形;過(guò)點(diǎn)M作MH⊥BC,垂足為H,易證△MHP≌△AOP,從而求出MH、OH的長(zhǎng),進(jìn)而得到點(diǎn)M的坐標(biāo).
(3)易證點(diǎn)E、M、B、G在以點(diǎn)Q為圓心,QB為半徑的圓上,從而得到∠MQG=2∠MBG.易得∠OCA=60°,從而得到∠MBG=60°,進(jìn)而得到∠MQG=120°,所以∠MQG是定值.
試題解析:解:(1)連接PA,如圖1所示.∵PO⊥AD,∴AO=DO.∵AD=,∴OA=.∵點(diǎn)P坐標(biāo)為(﹣1,0),∴OP=1,∴PA==2,∴BP=CP=2,∴B(﹣3,0),C(1,0);
(2)連接AP,延長(zhǎng)AP交⊙P于點(diǎn)M,連接MB、MC.如圖2所示,線(xiàn)段MB、MC即為所求作.四邊形ACMB是矩形.理由如下:
∵△MCB由△ABC繞點(diǎn)P旋轉(zhuǎn)180°所得,∴四邊形ACMB是平行四邊形.
∵BC是⊙P的直徑,∴∠CAB=90°,∴平行四邊形ACMB是矩形.
過(guò)點(diǎn)M作MH⊥BC,垂足為H,如圖2所示.
在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP,∴MH=OA=,PH=PO=1,∴OH=2,∴點(diǎn)M的坐標(biāo)為(﹣2,);
(3)在旋轉(zhuǎn)過(guò)程中∠MQG的大小不變.
∵四邊形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°,∴∠BMC=∠BGE=90°.
∵點(diǎn)Q是BE的中點(diǎn),∴QM=QE=QB=QG,∴點(diǎn)E、M、B、G在以點(diǎn)Q為圓心,QB為半徑的圓上,如圖3所示,∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==,∴∠OCA=60°,∴∠MBC=∠BCA=60°,∴∠MQG=120°,∴在旋轉(zhuǎn)過(guò)程中∠MQG的大小不變,始終等于120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是線(xiàn)段AB上的一點(diǎn),OA=OC,OD平分∠AOC交AC于點(diǎn)D,OF平分∠COB,CF⊥OF于點(diǎn)F.
(1)求證:四邊形CDOF是矩形;
(2)當(dāng)∠AOC多少度時(shí),四邊形CDOF是正方形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)有兩件進(jìn)價(jià)不同上衣均賣(mài)了80元,一件盈利60%,另一件虧本20%,這次買(mǎi)賣(mài)中商家( 。
A. 不賠不賺 B. 賺了10元 C. 賺了8元 D. 賺了32元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】逆命題的定義:如果兩個(gè)命題的題設(shè)和結(jié)論剛好相反,那么這樣的兩個(gè)命題叫做,如果把其中一個(gè)命題叫做原命題,那么另一個(gè)叫做它的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(x1,y1)、B(x2,y2)都在直線(xiàn)y=kx+2(k<0)上,且x1<x2則y1、y2的大小關(guān)系是( )
A.y1 =y2B.y1 <y2C.y1 >y2D.y1 ≥y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①A、E、F、C在一條直線(xiàn)上,AE=CF,過(guò)E、F分別作DE⊥AC,B F⊥AC,若AB=CD.
(1)圖①中有 對(duì)全等三角形,并把它們寫(xiě)出來(lái).
(2)求證:G是BD的中點(diǎn).
(3)若將△ABF的邊AF沿GA方向移動(dòng)變?yōu)閳D②時(shí),其余條件不變,第(2)題中的結(jié)論是否成立?如果成立,請(qǐng)予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知△ABC中,∠BAC=90°,AB=AC,AE是過(guò)A的一條直線(xiàn),且B、C在A、E的異側(cè),BD⊥AE于D,CE⊥AE于E
(1)試說(shuō)明:BD=DE+CE.
(2)若直線(xiàn)AE繞A點(diǎn)旋轉(zhuǎn)到圖(2)位置時(shí)(BD<CE),其余條件不變,問(wèn)BD與DE、CE的關(guān)系如何?請(qǐng)直接寫(xiě)出結(jié)果;
(3)若直線(xiàn)AE繞A點(diǎn)旋轉(zhuǎn)到圖(3)位置時(shí)(BD>CE),其余條件不變,問(wèn)BD與DE、CE的關(guān)系如何?請(qǐng)直接寫(xiě)出結(jié)果,不需說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)(a>0)與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)P是拋物線(xiàn)上一點(diǎn),且PB=AB,∠PBA=120°,如圖所示.
(1)求拋物線(xiàn)的解析式.
(2)設(shè)點(diǎn)M(m,n)為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且在曲線(xiàn)PA上移動(dòng).
①當(dāng)點(diǎn)M在曲線(xiàn)PB之間(含端點(diǎn))移動(dòng)時(shí),是否存在點(diǎn)M使△APM的面積為?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②當(dāng)點(diǎn)M在曲線(xiàn)BA之間(含端點(diǎn))移動(dòng)時(shí),求|m|+|n|的最大值及取得最大值時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com