【題目】圖1、圖2均是的正方形網(wǎng)格,每個小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長為1,點(diǎn)、、、均在格點(diǎn)上.在圖1、圖2中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點(diǎn)均在格點(diǎn)上,不要求寫出畫法.
(1)在圖1中以線段為邊畫一個,使,且的面積為3;
(2)在圖2中以線段為邊畫一個四邊形,使四邊形既是軸對稱圖形又是中心對稱圖形;
(3)直接寫出四邊形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個數(shù)學(xué)活動,其具體操作過程是:
第一步:對折矩形紙片,使與重合,得到折痕,把紙片展開(如圖①);
第二步:再一次折疊紙片,使點(diǎn)落在上,并使折痕經(jīng)過點(diǎn),得到折痕,同時得到線段(如圖②).
如圖②所示建立平面直角坐標(biāo)系,請解答以下問題:
(Ⅰ)設(shè)直線的解析式為,求的值;
(Ⅱ)若的延長線與矩形的邊交于點(diǎn),設(shè)矩形的邊,;
(i)若,,求點(diǎn)的坐標(biāo);
(ii)請直接寫出、應(yīng)該滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,對角線與相交于點(diǎn)點(diǎn)為的中點(diǎn),連接的延長線交的延長線于點(diǎn)連接.
(1)求證:;
(2)若判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt⊿ABC中,∠ACB是直角, tan∠B=,BC=16 cm,點(diǎn)D以2cm/s的速度由點(diǎn)A向點(diǎn)B勻速運(yùn)動,到達(dá)點(diǎn)B即停止,M、N分別是AD、CD的中點(diǎn),連結(jié)MN,設(shè)點(diǎn)D的運(yùn)動時間為t
(1)求MN的長;
(2)求點(diǎn)D由點(diǎn)A到點(diǎn)B勻速運(yùn)動過程中,線段MN所掃過的面積;
(3)若⊿DMN是等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)經(jīng)公司以40元/千克的價格收購一批農(nóng)產(chǎn)品進(jìn)行銷售,經(jīng)過市場調(diào)查,發(fā)現(xiàn)該產(chǎn)品日銷售量p(千克)與銷售價格x(元/千克)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
銷售價格x(元/千克) | 40 | 50 | 60 | 70 | 80 |
日銷售量p (千克) | 120 | 100 | 80 | 60 | 40 |
(1)求p與x之間的函數(shù)表達(dá)式;
(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價格,才能使日銷售利潤最大?
(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出m元(m>0)的相關(guān)費(fèi)用,當(dāng)時,農(nóng)經(jīng)公司的日獲利的最大值為1682元,求m的值.(日獲利日銷售利潤日支出費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線與軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),且.
(1)求這條拋物線的解析式;
(2)如圖2,點(diǎn)在軸上,且在點(diǎn)的右側(cè),點(diǎn)為拋物線上第二象限內(nèi)的點(diǎn),連接交拋物線于第二象限內(nèi)的另外一點(diǎn),點(diǎn)到軸的距離與點(diǎn)到軸的距離之比為,已知,求點(diǎn)的坐標(biāo);
(3)如圖3,在(2)的條件下,點(diǎn)由出發(fā),沿軸負(fù)方向運(yùn)動,連接,點(diǎn)在線段上,連接,,過點(diǎn)作,與拋物線相交于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點(diǎn)D,E是⊙O上一點(diǎn),且∠AED=45°.
(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E和點(diǎn)F是對角線AC上的兩點(diǎn),AF=CE,DF=BE,且DF∥BE,過點(diǎn)C作CG⊥AB交AB延長線與點(diǎn)G.
(1)求證:四邊形ABCD是平行四邊形;
(2)若tan∠CAB=,∠CBG=45°,BC=,則ABCD的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com